Incipient Infinite Percolation Clusters in 2d

We study several kinds of large critical percolation clusters in two dimensions. We show that from the microscopic (lattice scale) perspective these clusters can be described by Kesten's incipient infinite cluster (IIC), as was conjectured by Aizenman. More specifically, we establish this for i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2003-01, Vol.31 (1), p.444-485
1. Verfasser: JARAI, Antal A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 1
container_start_page 444
container_title The Annals of probability
container_volume 31
creator JARAI, Antal A
description We study several kinds of large critical percolation clusters in two dimensions. We show that from the microscopic (lattice scale) perspective these clusters can be described by Kesten's incipient infinite cluster (IIC), as was conjectured by Aizenman. More specifically, we establish this for incipient spanning clusters, large clusters in a finite box and the inhomogeneous model of Chayes, Chayes and Durrett. Our results prove the equivalence of several natural definitions of the IIC. We also show that for any k ≥ 1 the difference in size between the kth and (k + 1)st largest critical clusters in a finite box goes to infinity in probability as the size of the box goes to infinity. In addition, the distribution of the Chayes-Chayes-Durrett cluster is shown to be singular with respect to the IIC.
doi_str_mv 10.1214/aop/1046294317
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1046294317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481587</jstor_id><sourcerecordid>3481587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d0b88867ac92b84fdff2fe52e909b249f1689465f4830971312c4ddebccf6fdf3</originalsourceid><addsrcrecordid>eNplUD1PwzAUtBBIlMLKxJCFMa2_4o8NFPERKRIMVGKLHMeWHIU4st2Bf0-qRu3AdNJ7d_feHQD3CG4QRnSr_LRFkDIsKUH8AqwwYiIXkn5fghWEEuWIS3ENbmLsIYSMc7oCeTVqNzkzpqwarRtdMtmnCdoPKjk_ZuWwj8mEmLkxw90tuLJqiOZuwTXYvb58le95_fFWlc91rokoUt7BVgjBuNISt4LazlpsTYGNhLLFVNr5MUlZYakgUHJEENa060yrtWUzm6zB09F3Cr43Opm9HlzXTMH9qPDbeOWaclcv0wXm-M05_myxOVro4GMMxp7UCDaHvv4LHpebKmo12KDmZuJZRRkRvDjwHo68PiYfTntCBSoEJ3-ir3TG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incipient Infinite Percolation Clusters in 2d</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>JARAI, Antal A</creator><creatorcontrib>JARAI, Antal A</creatorcontrib><description>We study several kinds of large critical percolation clusters in two dimensions. We show that from the microscopic (lattice scale) perspective these clusters can be described by Kesten's incipient infinite cluster (IIC), as was conjectured by Aizenman. More specifically, we establish this for incipient spanning clusters, large clusters in a finite box and the inhomogeneous model of Chayes, Chayes and Durrett. Our results prove the equivalence of several natural definitions of the IIC. We also show that for any k ≥ 1 the difference in size between the kth and (k + 1)st largest critical clusters in a finite box goes to infinity in probability as the size of the box goes to infinity. In addition, the distribution of the Chayes-Chayes-Durrett cluster is shown to be singular with respect to the IIC.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1046294317</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60K35 ; 82B43 ; critical phenomena ; Critical point phenomena ; Cylinders ; Exact sciences and technology ; Gauge theory ; incipient infinite cluster ; Infinity ; Integers ; Mathematical lattices ; Mathematics ; Open star clusters ; Percolation ; Physics ; Probability and statistics ; Probability theory and stochastic processes ; Rectangles ; Sciences and techniques of general use ; spanning cluster ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Terminology ; Thermodynamics ; Vertices</subject><ispartof>The Annals of probability, 2003-01, Vol.31 (1), p.444-485</ispartof><rights>Copyright 2003 The Institute of Mathematical Statistics</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d0b88867ac92b84fdff2fe52e909b249f1689465f4830971312c4ddebccf6fdf3</citedby><cites>FETCH-LOGICAL-c385t-d0b88867ac92b84fdff2fe52e909b249f1689465f4830971312c4ddebccf6fdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,829,882,923,4011,27905,27906,27907,57999,58003,58232,58236</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14638757$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JARAI, Antal A</creatorcontrib><title>Incipient Infinite Percolation Clusters in 2d</title><title>The Annals of probability</title><description>We study several kinds of large critical percolation clusters in two dimensions. We show that from the microscopic (lattice scale) perspective these clusters can be described by Kesten's incipient infinite cluster (IIC), as was conjectured by Aizenman. More specifically, we establish this for incipient spanning clusters, large clusters in a finite box and the inhomogeneous model of Chayes, Chayes and Durrett. Our results prove the equivalence of several natural definitions of the IIC. We also show that for any k ≥ 1 the difference in size between the kth and (k + 1)st largest critical clusters in a finite box goes to infinity in probability as the size of the box goes to infinity. In addition, the distribution of the Chayes-Chayes-Durrett cluster is shown to be singular with respect to the IIC.</description><subject>60K35</subject><subject>82B43</subject><subject>critical phenomena</subject><subject>Critical point phenomena</subject><subject>Cylinders</subject><subject>Exact sciences and technology</subject><subject>Gauge theory</subject><subject>incipient infinite cluster</subject><subject>Infinity</subject><subject>Integers</subject><subject>Mathematical lattices</subject><subject>Mathematics</subject><subject>Open star clusters</subject><subject>Percolation</subject><subject>Physics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>spanning cluster</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Terminology</subject><subject>Thermodynamics</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAUtBBIlMLKxJCFMa2_4o8NFPERKRIMVGKLHMeWHIU4st2Bf0-qRu3AdNJ7d_feHQD3CG4QRnSr_LRFkDIsKUH8AqwwYiIXkn5fghWEEuWIS3ENbmLsIYSMc7oCeTVqNzkzpqwarRtdMtmnCdoPKjk_ZuWwj8mEmLkxw90tuLJqiOZuwTXYvb58le95_fFWlc91rokoUt7BVgjBuNISt4LazlpsTYGNhLLFVNr5MUlZYakgUHJEENa060yrtWUzm6zB09F3Cr43Opm9HlzXTMH9qPDbeOWaclcv0wXm-M05_myxOVro4GMMxp7UCDaHvv4LHpebKmo12KDmZuJZRRkRvDjwHo68PiYfTntCBSoEJ3-ir3TG</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>JARAI, Antal A</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030101</creationdate><title>Incipient Infinite Percolation Clusters in 2d</title><author>JARAI, Antal A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d0b88867ac92b84fdff2fe52e909b249f1689465f4830971312c4ddebccf6fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>60K35</topic><topic>82B43</topic><topic>critical phenomena</topic><topic>Critical point phenomena</topic><topic>Cylinders</topic><topic>Exact sciences and technology</topic><topic>Gauge theory</topic><topic>incipient infinite cluster</topic><topic>Infinity</topic><topic>Integers</topic><topic>Mathematical lattices</topic><topic>Mathematics</topic><topic>Open star clusters</topic><topic>Percolation</topic><topic>Physics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>spanning cluster</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Terminology</topic><topic>Thermodynamics</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JARAI, Antal A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JARAI, Antal A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incipient Infinite Percolation Clusters in 2d</atitle><jtitle>The Annals of probability</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>31</volume><issue>1</issue><spage>444</spage><epage>485</epage><pages>444-485</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We study several kinds of large critical percolation clusters in two dimensions. We show that from the microscopic (lattice scale) perspective these clusters can be described by Kesten's incipient infinite cluster (IIC), as was conjectured by Aizenman. More specifically, we establish this for incipient spanning clusters, large clusters in a finite box and the inhomogeneous model of Chayes, Chayes and Durrett. Our results prove the equivalence of several natural definitions of the IIC. We also show that for any k ≥ 1 the difference in size between the kth and (k + 1)st largest critical clusters in a finite box goes to infinity in probability as the size of the box goes to infinity. In addition, the distribution of the Chayes-Chayes-Durrett cluster is shown to be singular with respect to the IIC.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1046294317</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2003-01, Vol.31 (1), p.444-485
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1046294317
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60K35
82B43
critical phenomena
Critical point phenomena
Cylinders
Exact sciences and technology
Gauge theory
incipient infinite cluster
Infinity
Integers
Mathematical lattices
Mathematics
Open star clusters
Percolation
Physics
Probability and statistics
Probability theory and stochastic processes
Rectangles
Sciences and techniques of general use
spanning cluster
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistical physics, thermodynamics, and nonlinear dynamical systems
Terminology
Thermodynamics
Vertices
title Incipient Infinite Percolation Clusters in 2d
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incipient%20Infinite%20Percolation%20Clusters%20in%202d&rft.jtitle=The%20Annals%20of%20probability&rft.au=JARAI,%20Antal%20A&rft.date=2003-01-01&rft.volume=31&rft.issue=1&rft.spage=444&rft.epage=485&rft.pages=444-485&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1046294317&rft_dat=%3Cjstor_proje%3E3481587%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3481587&rfr_iscdi=true