Entropy Inequalities for Unbounded Spin Systems
We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fa...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2002-10, Vol.30 (4), p.1959-1976 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1976 |
---|---|
container_issue | 4 |
container_start_page | 1959 |
container_title | The Annals of probability |
container_volume | 30 |
creator | Pra, Paolo Dai Paganoni, Anna Maria Posta, Gustavo |
description | We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fails. To this end we prove a weaker modification of the logarithmic-Sobolev inequality. |
doi_str_mv | 10.1214/aop/1039548378 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1039548378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1558841</jstor_id><sourcerecordid>1558841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6375a99fb122dfa53c22587ccb993dd8a17fd417d80284c083553b4303e6923d3</originalsourceid><addsrcrecordid>eNplkM1LAzEUxIMoWKtXTx724nFtkpdskptSqhYKHmrB25LNB6RsN2uyPfS_t9LFHjwNzJv5PRiE7gl-IpSwmY79jGBQnEkQ8gJNKKlkKRX7ukQTjBUpiVDyGt3kvMUYV0KwCZotuiHF_lAsO_e9120YgsuFj6nYdE3cd9bZYt2Hrlgf8uB2-RZded1mdzfqFG1eF5_z93L18bacv6xKA5IPZQWCa6V8Qyi1XnMwlHIpjGmUAmulJsJbRoSVmEpmsATOoWGAwVWKgoUpej5x-xS3zgxub9pg6z6FnU6HOupQzzer0R3lOEB9HuCIeDohTIo5J-f_2gTXv4v9LzyOP3U2uvVJdybkc4sxDrwSx9zDKbfNQ0znO-dSMgI_b-504Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entropy Inequalities for Unbounded Spin Systems</title><source>Project Euclid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><source>JSTOR Mathematics & Statistics Collection</source><creator>Pra, Paolo Dai ; Paganoni, Anna Maria ; Posta, Gustavo</creator><creatorcontrib>Pra, Paolo Dai ; Paganoni, Anna Maria ; Posta, Gustavo</creatorcontrib><description>We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fails. To this end we prove a weaker modification of the logarithmic-Sobolev inequality.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1039548378</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60K35 ; 82C22 ; Boundary conditions ; Classical ensemble theory ; Classical statistical mechanics ; Entropy ; Exact sciences and technology ; logarithmic-Sobolev inequality ; Markov processes ; Mathematical inequalities ; Mathematical theorems ; Mathematics ; Physics ; Probabilities ; Probability and statistics ; Probability theory and stochastic processes ; Rectangles ; Sciences and techniques of general use ; Semigroups ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; spectral gap ; Spectroscopic analysis ; Spin systems ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Thermodynamic equilibrium</subject><ispartof>The Annals of probability, 2002-10, Vol.30 (4), p.1959-1976</ispartof><rights>Copyright 2002 The Institute of Mathematical Statistics</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2002 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6375a99fb122dfa53c22587ccb993dd8a17fd417d80284c083553b4303e6923d3</citedby><cites>FETCH-LOGICAL-c385t-6375a99fb122dfa53c22587ccb993dd8a17fd417d80284c083553b4303e6923d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1558841$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1558841$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14453567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pra, Paolo Dai</creatorcontrib><creatorcontrib>Paganoni, Anna Maria</creatorcontrib><creatorcontrib>Posta, Gustavo</creatorcontrib><title>Entropy Inequalities for Unbounded Spin Systems</title><title>The Annals of probability</title><description>We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fails. To this end we prove a weaker modification of the logarithmic-Sobolev inequality.</description><subject>60K35</subject><subject>82C22</subject><subject>Boundary conditions</subject><subject>Classical ensemble theory</subject><subject>Classical statistical mechanics</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>logarithmic-Sobolev inequality</subject><subject>Markov processes</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Semigroups</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>spectral gap</subject><subject>Spectroscopic analysis</subject><subject>Spin systems</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Thermodynamic equilibrium</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNplkM1LAzEUxIMoWKtXTx724nFtkpdskptSqhYKHmrB25LNB6RsN2uyPfS_t9LFHjwNzJv5PRiE7gl-IpSwmY79jGBQnEkQ8gJNKKlkKRX7ukQTjBUpiVDyGt3kvMUYV0KwCZotuiHF_lAsO_e9120YgsuFj6nYdE3cd9bZYt2Hrlgf8uB2-RZded1mdzfqFG1eF5_z93L18bacv6xKA5IPZQWCa6V8Qyi1XnMwlHIpjGmUAmulJsJbRoSVmEpmsATOoWGAwVWKgoUpej5x-xS3zgxub9pg6z6FnU6HOupQzzer0R3lOEB9HuCIeDohTIo5J-f_2gTXv4v9LzyOP3U2uvVJdybkc4sxDrwSx9zDKbfNQ0znO-dSMgI_b-504Q</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Pra, Paolo Dai</creator><creator>Paganoni, Anna Maria</creator><creator>Posta, Gustavo</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021001</creationdate><title>Entropy Inequalities for Unbounded Spin Systems</title><author>Pra, Paolo Dai ; Paganoni, Anna Maria ; Posta, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6375a99fb122dfa53c22587ccb993dd8a17fd417d80284c083553b4303e6923d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>60K35</topic><topic>82C22</topic><topic>Boundary conditions</topic><topic>Classical ensemble theory</topic><topic>Classical statistical mechanics</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>logarithmic-Sobolev inequality</topic><topic>Markov processes</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Semigroups</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>spectral gap</topic><topic>Spectroscopic analysis</topic><topic>Spin systems</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pra, Paolo Dai</creatorcontrib><creatorcontrib>Paganoni, Anna Maria</creatorcontrib><creatorcontrib>Posta, Gustavo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pra, Paolo Dai</au><au>Paganoni, Anna Maria</au><au>Posta, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Inequalities for Unbounded Spin Systems</atitle><jtitle>The Annals of probability</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>30</volume><issue>4</issue><spage>1959</spage><epage>1976</epage><pages>1959-1976</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fails. To this end we prove a weaker modification of the logarithmic-Sobolev inequality.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1039548378</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2002-10, Vol.30 (4), p.1959-1976 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1039548378 |
source | Project Euclid; EZB-FREE-00999 freely available EZB journals; JSTOR; JSTOR Mathematics & Statistics Collection |
subjects | 60K35 82C22 Boundary conditions Classical ensemble theory Classical statistical mechanics Entropy Exact sciences and technology logarithmic-Sobolev inequality Markov processes Mathematical inequalities Mathematical theorems Mathematics Physics Probabilities Probability and statistics Probability theory and stochastic processes Rectangles Sciences and techniques of general use Semigroups Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) spectral gap Spectroscopic analysis Spin systems Statistical physics, thermodynamics, and nonlinear dynamical systems Thermodynamic equilibrium |
title | Entropy Inequalities for Unbounded Spin Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Inequalities%20for%20Unbounded%20Spin%20Systems&rft.jtitle=The%20Annals%20of%20probability&rft.au=Pra,%20Paolo%20Dai&rft.date=2002-10-01&rft.volume=30&rft.issue=4&rft.spage=1959&rft.epage=1976&rft.pages=1959-1976&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1039548378&rft_dat=%3Cjstor_proje%3E1558841%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1558841&rfr_iscdi=true |