Doob, Ignatov and Optional Skipping

A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936) 363-367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977) 79-94...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2002-10, Vol.30 (4), p.1933-1958
Hauptverfasser: Simons, Gordon, Yao, Yi-Ching, Yang, Lijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 4
container_start_page 1933
container_title The Annals of probability
container_volume 30
creator Simons, Gordon
Yao, Yi-Ching
Yang, Lijian
description A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936) 363-367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977) 79-94], unifying and extending aspects of both.
doi_str_mv 10.1214/aop/1039548377
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1039548377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1558840</jstor_id><sourcerecordid>1558840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a4f1589d0097c3f64853d8403bfb79eaf05fa95e764a61b3f491707e9eaf68143</originalsourceid><addsrcrecordid>eNplUE1LwzAYDqLgnF49eSiIN7sly_dNmV-DwQ468FbepsnIrE1JquC_t2PFHTw98D5fPC9ClwRPyIywKYR2SjDVnCkq5REazYhQudLs_RiNMNYkJ1KrU3SW0hZjLKRkI3T9EEJ5my02DXThO4OmylZt50MDdfb64dvWN5tzdOKgTvZiwDFaPz2-zV_y5ep5Mb9f5oYy3OXAHOFKV32VNNQJpjitFMO0dKXUFhzmDjS3UjAQpKSOaSKxtDtKKMLoGN3tc9sYttZ09svUvira6D8h_hQBfDFfL4frAP3o4jC6j5jsI0wMKUXr_twEF7sv_TfcDJ2QDNQuQmN8OrgY45QL0euu9rpt6kI88Jyr3cRfXA1wBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Doob, Ignatov and Optional Skipping</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Simons, Gordon ; Yao, Yi-Ching ; Yang, Lijian</creator><creatorcontrib>Simons, Gordon ; Yao, Yi-Ching ; Yang, Lijian</creatorcontrib><description>A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936) 363-367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977) 79-94], unifying and extending aspects of both.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1039548377</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>28D05 ; 60G40 ; Backward induction ; Definiteness ; disentangled stopping times ; Distribution theory ; Exact sciences and technology ; Ignatov's theorem ; indexical stopping times ; Indexicality ; Induction assumption ; k-records ; Logical givens ; Mathematical analysis ; Mathematical theorems ; Mathematics ; Measure and integration ; optional skipping ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; records ; Sciences and techniques of general use ; Stochastic processes ; Stopping distances ; Truncation</subject><ispartof>The Annals of probability, 2002-10, Vol.30 (4), p.1933-1958</ispartof><rights>Copyright 2002 The Institute of Mathematical Statistics</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2002 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-a4f1589d0097c3f64853d8403bfb79eaf05fa95e764a61b3f491707e9eaf68143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1558840$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1558840$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14453566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Simons, Gordon</creatorcontrib><creatorcontrib>Yao, Yi-Ching</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><title>Doob, Ignatov and Optional Skipping</title><title>The Annals of probability</title><description>A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936) 363-367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977) 79-94], unifying and extending aspects of both.</description><subject>28D05</subject><subject>60G40</subject><subject>Backward induction</subject><subject>Definiteness</subject><subject>disentangled stopping times</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Ignatov's theorem</subject><subject>indexical stopping times</subject><subject>Indexicality</subject><subject>Induction assumption</subject><subject>k-records</subject><subject>Logical givens</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>optional skipping</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>records</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Stopping distances</subject><subject>Truncation</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNplUE1LwzAYDqLgnF49eSiIN7sly_dNmV-DwQ468FbepsnIrE1JquC_t2PFHTw98D5fPC9ClwRPyIywKYR2SjDVnCkq5REazYhQudLs_RiNMNYkJ1KrU3SW0hZjLKRkI3T9EEJ5my02DXThO4OmylZt50MDdfb64dvWN5tzdOKgTvZiwDFaPz2-zV_y5ep5Mb9f5oYy3OXAHOFKV32VNNQJpjitFMO0dKXUFhzmDjS3UjAQpKSOaSKxtDtKKMLoGN3tc9sYttZ09svUvira6D8h_hQBfDFfL4frAP3o4jC6j5jsI0wMKUXr_twEF7sv_TfcDJ2QDNQuQmN8OrgY45QL0euu9rpt6kI88Jyr3cRfXA1wBg</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Simons, Gordon</creator><creator>Yao, Yi-Ching</creator><creator>Yang, Lijian</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021001</creationdate><title>Doob, Ignatov and Optional Skipping</title><author>Simons, Gordon ; Yao, Yi-Ching ; Yang, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a4f1589d0097c3f64853d8403bfb79eaf05fa95e764a61b3f491707e9eaf68143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>28D05</topic><topic>60G40</topic><topic>Backward induction</topic><topic>Definiteness</topic><topic>disentangled stopping times</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Ignatov's theorem</topic><topic>indexical stopping times</topic><topic>Indexicality</topic><topic>Induction assumption</topic><topic>k-records</topic><topic>Logical givens</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>optional skipping</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>records</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Stopping distances</topic><topic>Truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simons, Gordon</creatorcontrib><creatorcontrib>Yao, Yi-Ching</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simons, Gordon</au><au>Yao, Yi-Ching</au><au>Yang, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doob, Ignatov and Optional Skipping</atitle><jtitle>The Annals of probability</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>30</volume><issue>4</issue><spage>1933</spage><epage>1958</epage><pages>1933-1958</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is motivated by theorems of J. L. Doob [Ann. of Math. 37 (1936) 363-367] and Z. Ignatov [Annuaire Univ. Sofia Fac. Math. Méch. 71 (1977) 79-94], unifying and extending aspects of both.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1039548377</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2002-10, Vol.30 (4), p.1933-1958
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1039548377
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 28D05
60G40
Backward induction
Definiteness
disentangled stopping times
Distribution theory
Exact sciences and technology
Ignatov's theorem
indexical stopping times
Indexicality
Induction assumption
k-records
Logical givens
Mathematical analysis
Mathematical theorems
Mathematics
Measure and integration
optional skipping
Probability and statistics
Probability theory and stochastic processes
Random variables
records
Sciences and techniques of general use
Stochastic processes
Stopping distances
Truncation
title Doob, Ignatov and Optional Skipping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doob,%20Ignatov%20and%20Optional%20Skipping&rft.jtitle=The%20Annals%20of%20probability&rft.au=Simons,%20Gordon&rft.date=2002-10-01&rft.volume=30&rft.issue=4&rft.spage=1933&rft.epage=1958&rft.pages=1933-1958&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1039548377&rft_dat=%3Cjstor_proje%3E1558840%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1558840&rfr_iscdi=true