The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees

We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2001-10, Vol.29 (4), p.1563-1590
Hauptverfasser: Pemantle, Robin, Stacey, Alan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 4
container_start_page 1563
container_title The Annals of probability
container_volume 29
creator Pemantle, Robin
Stacey, Alan M.
description We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the contact process has two; this contradicts a conjecture of Madras and Schinazi. We show that the contact process has only one phase transition on some trees of uniformly exponential growth and bounded degree, contradicting a conjecture of Pemantle.
doi_str_mv 10.1214/aop/1015345762
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1015345762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2691970</jstor_id><sourcerecordid>2691970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-35bbd6770a4739f3a8a1c83602f4b37b7f34d10716fa3b0bf216a1635b5e1b863</originalsourceid><addsrcrecordid>eNplUD1PwzAUtBBIlMLKxOCFMa0dJ3ayAREUpAoQSlW26MWx25TUrux04N-TqFE7ML3Pu3fvELqlZEJDGk3B7qaU0JhFseDhGRqFlCdBkkbf52hESEoDKtLkEl15vyGEcCGiEVrma4WfHBi5rs0Kf4Gp7BYvofnBXYoza1qQLf50VirvsTV4Bk1rTbCE1ndVv_Ruzdpu7UoZZfce504pf40uNDRe3QxxjBYvz3n2Gsw_Zm_Z4zyQLInbgMVlWXVKCESCpZpBAlQmjJNQRyUTpdAsqigRlGtgJSl19xNQ3sFiRcuEszF6OPDunN0o2aq9bOqq2Ll6C-63sFAX2WI-dIfQGVWcjOooJgcK6az3TukjmpKid_Y_4H64CV5Co3v3an9CsZgREvba7g57G99ad5yHPKWpIOwP-ZuC6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Pemantle, Robin ; Stacey, Alan M.</creator><creatorcontrib>Pemantle, Robin ; Stacey, Alan M.</creatorcontrib><description>We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the contact process has two; this contradicts a conjecture of Madras and Schinazi. We show that the contact process has only one phase transition on some trees of uniformly exponential growth and bounded degree, contradicting a conjecture of Pemantle.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1015345762</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60K35 ; branching random walk ; Children ; Conditional probabilities ; contact process ; Critical values ; Exact sciences and technology ; Grants ; Infections ; Mathematics ; phase transition ; Plant roots ; Poisson process ; Probability and statistics ; Probability theory and stochastic processes ; Random walk ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; spectral radius ; Trails ; Tree ; Vertices</subject><ispartof>The Annals of probability, 2001-10, Vol.29 (4), p.1563-1590</ispartof><rights>Copyright 2001 Institute of Mathematical Statistics</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-35bbd6770a4739f3a8a1c83602f4b37b7f34d10716fa3b0bf216a1635b5e1b863</citedby><cites>FETCH-LOGICAL-c385t-35bbd6770a4739f3a8a1c83602f4b37b7f34d10716fa3b0bf216a1635b5e1b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2691970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2691970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13530026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pemantle, Robin</creatorcontrib><creatorcontrib>Stacey, Alan M.</creatorcontrib><title>The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees</title><title>The Annals of probability</title><description>We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the contact process has two; this contradicts a conjecture of Madras and Schinazi. We show that the contact process has only one phase transition on some trees of uniformly exponential growth and bounded degree, contradicting a conjecture of Pemantle.</description><subject>60K35</subject><subject>branching random walk</subject><subject>Children</subject><subject>Conditional probabilities</subject><subject>contact process</subject><subject>Critical values</subject><subject>Exact sciences and technology</subject><subject>Grants</subject><subject>Infections</subject><subject>Mathematics</subject><subject>phase transition</subject><subject>Plant roots</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>spectral radius</subject><subject>Trails</subject><subject>Tree</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAUtBBIlMLKxOCFMa0dJ3ayAREUpAoQSlW26MWx25TUrux04N-TqFE7ML3Pu3fvELqlZEJDGk3B7qaU0JhFseDhGRqFlCdBkkbf52hESEoDKtLkEl15vyGEcCGiEVrma4WfHBi5rs0Kf4Gp7BYvofnBXYoza1qQLf50VirvsTV4Bk1rTbCE1ndVv_Ruzdpu7UoZZfce504pf40uNDRe3QxxjBYvz3n2Gsw_Zm_Z4zyQLInbgMVlWXVKCESCpZpBAlQmjJNQRyUTpdAsqigRlGtgJSl19xNQ3sFiRcuEszF6OPDunN0o2aq9bOqq2Ll6C-63sFAX2WI-dIfQGVWcjOooJgcK6az3TukjmpKid_Y_4H64CV5Co3v3an9CsZgREvba7g57G99ad5yHPKWpIOwP-ZuC6Q</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Pemantle, Robin</creator><creator>Stacey, Alan M.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011001</creationdate><title>The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees</title><author>Pemantle, Robin ; Stacey, Alan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-35bbd6770a4739f3a8a1c83602f4b37b7f34d10716fa3b0bf216a1635b5e1b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>60K35</topic><topic>branching random walk</topic><topic>Children</topic><topic>Conditional probabilities</topic><topic>contact process</topic><topic>Critical values</topic><topic>Exact sciences and technology</topic><topic>Grants</topic><topic>Infections</topic><topic>Mathematics</topic><topic>phase transition</topic><topic>Plant roots</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>spectral radius</topic><topic>Trails</topic><topic>Tree</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pemantle, Robin</creatorcontrib><creatorcontrib>Stacey, Alan M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pemantle, Robin</au><au>Stacey, Alan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees</atitle><jtitle>The Annals of probability</jtitle><date>2001-10-01</date><risdate>2001</risdate><volume>29</volume><issue>4</issue><spage>1563</spage><epage>1590</epage><pages>1563-1590</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We show that the branching random walk on a Galton-Watson tree may have one or two phase transitions, depending on the relative sizes of the mean degree and the maximum degree. We show that there are some Galton-Watson trees on which the branching random walk has one phase transition while the contact process has two; this contradicts a conjecture of Madras and Schinazi. We show that the contact process has only one phase transition on some trees of uniformly exponential growth and bounded degree, contradicting a conjecture of Pemantle.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1015345762</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2001-10, Vol.29 (4), p.1563-1590
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1015345762
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects 60K35
branching random walk
Children
Conditional probabilities
contact process
Critical values
Exact sciences and technology
Grants
Infections
Mathematics
phase transition
Plant roots
Poisson process
Probability and statistics
Probability theory and stochastic processes
Random walk
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
spectral radius
Trails
Tree
Vertices
title The Branching Random Walk and Contact Process on Galton-Watson and Nonhomogeneous Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Branching%20Random%20Walk%20and%20Contact%20Process%20on%20Galton-Watson%20and%20Nonhomogeneous%20Trees&rft.jtitle=The%20Annals%20of%20probability&rft.au=Pemantle,%20Robin&rft.date=2001-10-01&rft.volume=29&rft.issue=4&rft.spage=1563&rft.epage=1590&rft.pages=1563-1590&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1015345762&rft_dat=%3Cjstor_proje%3E2691970%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2691970&rfr_iscdi=true