Stein's Method and Birth-Death Processes

Barbour introduced a probabilistic view of Stein's method for estimating the error in probability approximations. However, in the case of approximations by general distributions on the integers, there have been no purely probabilistic proofs of Stein bounds till this paper. Furthermore, the met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2001-07, Vol.29 (3), p.1373-1403
Hauptverfasser: Brown, Timothy C., Xia, Aihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1403
container_issue 3
container_start_page 1373
container_title The Annals of probability
container_volume 29
creator Brown, Timothy C.
Xia, Aihua
description Barbour introduced a probabilistic view of Stein's method for estimating the error in probability approximations. However, in the case of approximations by general distributions on the integers, there have been no purely probabilistic proofs of Stein bounds till this paper. Furthermore, the methods introduced here apply to a very large class of approximating distributions on the non-negative integers, among which there is a natural class for higher-order approximations by probability distributions rather than signed measures (as previously). The methods also produce Stein magic factors for process approximations which do not increase with the window of observation and which are simpler to apply than those in Brown, Weinberg and Xia.
doi_str_mv 10.1214/aop/1015345606
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1015345606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2692035</jstor_id><sourcerecordid>2692035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-573a9dc627d585fb916e8af57a9d035a98b14351058d5895449b51cd965183e83</originalsourceid><addsrcrecordid>eNplUD1PwzAUtBBIlMLKxJAFwZLWL_Zz7A0In1IQSFCJLXIdR01V6so2A_-eVInagemke3f3dEfIOdAJZMCn2m2mQAEZR0HFARllIGQqFf86JCNKFaSQK3lMTkJYUkpFnvMRuf6Itl1fheTVxoWrE72uk7vWx0V6b3VcJO_eGRuCDafkqNGrYM8GHJPZ48Nn8ZyWb08vxW2ZGiYxppgzrWojsrxGic1cgbBSN5h3LGWolZwDZwgUZSdQyLmaI5haCQTJrGRjctPnbrxbWhPtj1m1dbXx7bf2v5XTbVXMyoEdoGte7Zt3EZM-wngXgrfNzg202k7133A5_NTB6FXj9dq0Ye9inEmAre6i1y1DdH53z4TKum7sDyO5cNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stein's Method and Birth-Death Processes</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Brown, Timothy C. ; Xia, Aihua</creator><creatorcontrib>Brown, Timothy C. ; Xia, Aihua</creatorcontrib><description>Barbour introduced a probabilistic view of Stein's method for estimating the error in probability approximations. However, in the case of approximations by general distributions on the integers, there have been no purely probabilistic proofs of Stein bounds till this paper. Furthermore, the methods introduced here apply to a very large class of approximating distributions on the non-negative integers, among which there is a natural class for higher-order approximations by probability distributions rather than signed measures (as previously). The methods also produce Stein magic factors for process approximations which do not increase with the window of observation and which are simpler to apply than those in Brown, Weinberg and Xia.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1015345606</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60E05 ; 60E15 ; 60F05 ; 60G55 ; Approximation ; Binomial distributions ; Binomials ; Birth rates ; birth-death process ; compound Poisson distribution ; Distribution theory ; distributional approximation ; Exact sciences and technology ; Integers ; Limit theorems ; Markov processes ; Mathematics ; Mortality ; negative binomial distribution ; Poisson process ; Poisson process approximation ; polynomial birth-death distribution ; Polynomials ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Stein's method ; Stochastic processes ; total variation distance ; Wasserstein distance</subject><ispartof>The Annals of probability, 2001-07, Vol.29 (3), p.1373-1403</ispartof><rights>Copyright 2001 Institute of Mathematical Statistics</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-573a9dc627d585fb916e8af57a9d035a98b14351058d5895449b51cd965183e83</citedby><cites>FETCH-LOGICAL-c385t-573a9dc627d585fb916e8af57a9d035a98b14351058d5895449b51cd965183e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2692035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2692035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13438116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Timothy C.</creatorcontrib><creatorcontrib>Xia, Aihua</creatorcontrib><title>Stein's Method and Birth-Death Processes</title><title>The Annals of probability</title><description>Barbour introduced a probabilistic view of Stein's method for estimating the error in probability approximations. However, in the case of approximations by general distributions on the integers, there have been no purely probabilistic proofs of Stein bounds till this paper. Furthermore, the methods introduced here apply to a very large class of approximating distributions on the non-negative integers, among which there is a natural class for higher-order approximations by probability distributions rather than signed measures (as previously). The methods also produce Stein magic factors for process approximations which do not increase with the window of observation and which are simpler to apply than those in Brown, Weinberg and Xia.</description><subject>60E05</subject><subject>60E15</subject><subject>60F05</subject><subject>60G55</subject><subject>Approximation</subject><subject>Binomial distributions</subject><subject>Binomials</subject><subject>Birth rates</subject><subject>birth-death process</subject><subject>compound Poisson distribution</subject><subject>Distribution theory</subject><subject>distributional approximation</subject><subject>Exact sciences and technology</subject><subject>Integers</subject><subject>Limit theorems</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Mortality</subject><subject>negative binomial distribution</subject><subject>Poisson process</subject><subject>Poisson process approximation</subject><subject>polynomial birth-death distribution</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Stein's method</subject><subject>Stochastic processes</subject><subject>total variation distance</subject><subject>Wasserstein distance</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAUtBBIlMLKxJAFwZLWL_Zz7A0In1IQSFCJLXIdR01V6so2A_-eVInagemke3f3dEfIOdAJZMCn2m2mQAEZR0HFARllIGQqFf86JCNKFaSQK3lMTkJYUkpFnvMRuf6Itl1fheTVxoWrE72uk7vWx0V6b3VcJO_eGRuCDafkqNGrYM8GHJPZ48Nn8ZyWb08vxW2ZGiYxppgzrWojsrxGic1cgbBSN5h3LGWolZwDZwgUZSdQyLmaI5haCQTJrGRjctPnbrxbWhPtj1m1dbXx7bf2v5XTbVXMyoEdoGte7Zt3EZM-wngXgrfNzg202k7133A5_NTB6FXj9dq0Ye9inEmAre6i1y1DdH53z4TKum7sDyO5cNQ</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Brown, Timothy C.</creator><creator>Xia, Aihua</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010701</creationdate><title>Stein's Method and Birth-Death Processes</title><author>Brown, Timothy C. ; Xia, Aihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-573a9dc627d585fb916e8af57a9d035a98b14351058d5895449b51cd965183e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>60E05</topic><topic>60E15</topic><topic>60F05</topic><topic>60G55</topic><topic>Approximation</topic><topic>Binomial distributions</topic><topic>Binomials</topic><topic>Birth rates</topic><topic>birth-death process</topic><topic>compound Poisson distribution</topic><topic>Distribution theory</topic><topic>distributional approximation</topic><topic>Exact sciences and technology</topic><topic>Integers</topic><topic>Limit theorems</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Mortality</topic><topic>negative binomial distribution</topic><topic>Poisson process</topic><topic>Poisson process approximation</topic><topic>polynomial birth-death distribution</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Stein's method</topic><topic>Stochastic processes</topic><topic>total variation distance</topic><topic>Wasserstein distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Timothy C.</creatorcontrib><creatorcontrib>Xia, Aihua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Timothy C.</au><au>Xia, Aihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stein's Method and Birth-Death Processes</atitle><jtitle>The Annals of probability</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>29</volume><issue>3</issue><spage>1373</spage><epage>1403</epage><pages>1373-1403</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Barbour introduced a probabilistic view of Stein's method for estimating the error in probability approximations. However, in the case of approximations by general distributions on the integers, there have been no purely probabilistic proofs of Stein bounds till this paper. Furthermore, the methods introduced here apply to a very large class of approximating distributions on the non-negative integers, among which there is a natural class for higher-order approximations by probability distributions rather than signed measures (as previously). The methods also produce Stein magic factors for process approximations which do not increase with the window of observation and which are simpler to apply than those in Brown, Weinberg and Xia.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1015345606</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2001-07, Vol.29 (3), p.1373-1403
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1015345606
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60E05
60E15
60F05
60G55
Approximation
Binomial distributions
Binomials
Birth rates
birth-death process
compound Poisson distribution
Distribution theory
distributional approximation
Exact sciences and technology
Integers
Limit theorems
Markov processes
Mathematics
Mortality
negative binomial distribution
Poisson process
Poisson process approximation
polynomial birth-death distribution
Polynomials
Probability and statistics
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
Stein's method
Stochastic processes
total variation distance
Wasserstein distance
title Stein's Method and Birth-Death Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stein's%20Method%20and%20Birth-Death%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=Brown,%20Timothy%20C.&rft.date=2001-07-01&rft.volume=29&rft.issue=3&rft.spage=1373&rft.epage=1403&rft.pages=1373-1403&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1015345606&rft_dat=%3Cjstor_proje%3E2692035%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2692035&rfr_iscdi=true