Optimum Allocation in Linear Regression Theory

If for the estimation of β1, β2different observations (``sources'') of form (1.1) are potentially available, each of them being repeatable as many times as we please, the question arises which of them the experimenter should utilize, and in what proportions. With appropriate optimality con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of mathematical statistics 1952-06, Vol.23 (2), p.255-262
1. Verfasser: Elfving, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 255
container_title The Annals of mathematical statistics
container_volume 23
creator Elfving, G.
description If for the estimation of β1, β2different observations (``sources'') of form (1.1) are potentially available, each of them being repeatable as many times as we please, the question arises which of them the experimenter should utilize, and in what proportions. With appropriate optimality conventions the answer is the following. For the estimation of a single quantity of form θ = α1β1+ α2β2the optimum allocation comprises two sources only; for the estimation of both parameters, the corresponding number is two or three; the best proportions are indicated in Sections 2 and 4 below. Generalizations to more than two parameters and to observations at different costs are briefly discussed. The problem is related to Hotelling's weighing problem [2] and to the topics treated by David and Neyman in [1].
doi_str_mv 10.1214/aoms/1177729442
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoms_1177729442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2236451</jstor_id><sourcerecordid>2236451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a840eeddb95b6cabe55f2d4e92025cc45614a68b0e0d55805626a098fb433a213</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRMFbXblzkD6Sd70yWIagVAgVp12EyedEJSSbMpIv-ew0tdePq8i7vnsVB6JngNaGEb7QbwoaQNE1pxjm9QRElUiUqy_AtijDGLOFKkHv0EEK3nEzJCK1302yH4xDnfe-Mnq0bYzvGpR1B-_gTvjyEsJT7b3D-9IjuWt0HeLrkCh3eXvfFNil37x9FXiaGiXROtOIYoGnqTNTS6BqEaGnDIaOYCmO4kIRrqWoMuBFCYSGp1DhTbc0Z05SwFcrP3Mm7DswMR9Pbppq8HbQ_VU7bqjiUl_YSi4DqT8AvY3NmGO9C8NBe5wRXi7J_Fi_nRRdm56_vlDLJBWE_ERtpOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimum Allocation in Linear Regression Theory</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Elfving, G.</creator><creatorcontrib>Elfving, G.</creatorcontrib><description>If for the estimation of β1, β2different observations (``sources'') of form (1.1) are potentially available, each of them being repeatable as many times as we please, the question arises which of them the experimenter should utilize, and in what proportions. With appropriate optimality conventions the answer is the following. For the estimation of a single quantity of form θ = α1β1+ α2β2the optimum allocation comprises two sources only; for the estimation of both parameters, the corresponding number is two or three; the best proportions are indicated in Sections 2 and 4 below. Generalizations to more than two parameters and to observations at different costs are briefly discussed. The problem is related to Hotelling's weighing problem [2] and to the topics treated by David and Neyman in [1].</description><identifier>ISSN: 0003-4851</identifier><identifier>EISSN: 2168-8990</identifier><identifier>DOI: 10.1214/aoms/1177729442</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Coefficients ; Ellipses ; Estimate reliability ; Linear regression ; Mathematical minima ; Minimum value ; Polygons ; Standard deviation ; Statistical variance</subject><ispartof>The Annals of mathematical statistics, 1952-06, Vol.23 (2), p.255-262</ispartof><rights>Copyright 1952 Institute of Mathematical Statistics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a840eeddb95b6cabe55f2d4e92025cc45614a68b0e0d55805626a098fb433a213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2236451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2236451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,882,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Elfving, G.</creatorcontrib><title>Optimum Allocation in Linear Regression Theory</title><title>The Annals of mathematical statistics</title><description>If for the estimation of β1, β2different observations (``sources'') of form (1.1) are potentially available, each of them being repeatable as many times as we please, the question arises which of them the experimenter should utilize, and in what proportions. With appropriate optimality conventions the answer is the following. For the estimation of a single quantity of form θ = α1β1+ α2β2the optimum allocation comprises two sources only; for the estimation of both parameters, the corresponding number is two or three; the best proportions are indicated in Sections 2 and 4 below. Generalizations to more than two parameters and to observations at different costs are briefly discussed. The problem is related to Hotelling's weighing problem [2] and to the topics treated by David and Neyman in [1].</description><subject>Coefficients</subject><subject>Ellipses</subject><subject>Estimate reliability</subject><subject>Linear regression</subject><subject>Mathematical minima</subject><subject>Minimum value</subject><subject>Polygons</subject><subject>Standard deviation</subject><subject>Statistical variance</subject><issn>0003-4851</issn><issn>2168-8990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1952</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AURQdRMFbXblzkD6Sd70yWIagVAgVp12EyedEJSSbMpIv-ew0tdePq8i7vnsVB6JngNaGEb7QbwoaQNE1pxjm9QRElUiUqy_AtijDGLOFKkHv0EEK3nEzJCK1302yH4xDnfe-Mnq0bYzvGpR1B-_gTvjyEsJT7b3D-9IjuWt0HeLrkCh3eXvfFNil37x9FXiaGiXROtOIYoGnqTNTS6BqEaGnDIaOYCmO4kIRrqWoMuBFCYSGp1DhTbc0Z05SwFcrP3Mm7DswMR9Pbppq8HbQ_VU7bqjiUl_YSi4DqT8AvY3NmGO9C8NBe5wRXi7J_Fi_nRRdm56_vlDLJBWE_ERtpOg</recordid><startdate>19520601</startdate><enddate>19520601</enddate><creator>Elfving, G.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19520601</creationdate><title>Optimum Allocation in Linear Regression Theory</title><author>Elfving, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a840eeddb95b6cabe55f2d4e92025cc45614a68b0e0d55805626a098fb433a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1952</creationdate><topic>Coefficients</topic><topic>Ellipses</topic><topic>Estimate reliability</topic><topic>Linear regression</topic><topic>Mathematical minima</topic><topic>Minimum value</topic><topic>Polygons</topic><topic>Standard deviation</topic><topic>Statistical variance</topic><toplevel>online_resources</toplevel><creatorcontrib>Elfving, G.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of mathematical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elfving, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum Allocation in Linear Regression Theory</atitle><jtitle>The Annals of mathematical statistics</jtitle><date>1952-06-01</date><risdate>1952</risdate><volume>23</volume><issue>2</issue><spage>255</spage><epage>262</epage><pages>255-262</pages><issn>0003-4851</issn><eissn>2168-8990</eissn><abstract>If for the estimation of β1, β2different observations (``sources'') of form (1.1) are potentially available, each of them being repeatable as many times as we please, the question arises which of them the experimenter should utilize, and in what proportions. With appropriate optimality conventions the answer is the following. For the estimation of a single quantity of form θ = α1β1+ α2β2the optimum allocation comprises two sources only; for the estimation of both parameters, the corresponding number is two or three; the best proportions are indicated in Sections 2 and 4 below. Generalizations to more than two parameters and to observations at different costs are briefly discussed. The problem is related to Hotelling's weighing problem [2] and to the topics treated by David and Neyman in [1].</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoms/1177729442</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4851
ispartof The Annals of mathematical statistics, 1952-06, Vol.23 (2), p.255-262
issn 0003-4851
2168-8990
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoms_1177729442
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Coefficients
Ellipses
Estimate reliability
Linear regression
Mathematical minima
Minimum value
Polygons
Standard deviation
Statistical variance
title Optimum Allocation in Linear Regression Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20Allocation%20in%20Linear%20Regression%20Theory&rft.jtitle=The%20Annals%20of%20mathematical%20statistics&rft.au=Elfving,%20G.&rft.date=1952-06-01&rft.volume=23&rft.issue=2&rft.spage=255&rft.epage=262&rft.pages=255-262&rft.issn=0003-4851&rft.eissn=2168-8990&rft_id=info:doi/10.1214/aoms/1177729442&rft_dat=%3Cjstor_proje%3E2236451%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2236451&rfr_iscdi=true