A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME

For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The annals of applied statistics 2015-09, Vol.9 (3), p.1433-1458
Hauptverfasser: Dagum, Estela Bee, Bianconcini, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1458
container_issue 3
container_start_page 1433
container_title The annals of applied statistics
container_volume 9
creator Dagum, Estela Bee
Bianconcini, Silvia
description For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policymaking viewpoint, they are too slow in detecting true turning points. In this paper, we use a reproducing kernel methodology to derive asymmetric filters that converge quickly and monotonically to the corresponding symmetric one. We show theoretically that proposed criteria for time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Musgrave filters from the viewpoint of revisions and time delay to detect true turning points. We use a set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains statistical agencies could have by also using our methods in their practice.
doi_str_mv 10.1214/15-AOAS856
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1446488746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43826428</jstor_id><sourcerecordid>43826428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-336ef0c0d9d86c3e70597a4c3be0ba92758b03c777edad0e88d75b03d0dd439c3</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoOKcX70LOQjRpkiY9lpquxf6ANkM8lSzJYGPS0c6D_70dKzu9L-99vu_wAHgm-I0EhL0TjuI6biUPb8CCRIwgQSm-Pd80QCHh4h48jOMeY84kIwtQxbBSX7BVGtYpjNvvslS6yROY5oVWTQvTuoG6iZPPvFpBnSnYZnWj0ZSVk6-qD5hXsFFxgXReqkdwtzWH0T_NugTrVOkkQ0W9ypMJspSJE6I09FtssYucDC31AvNIGGbpxuONiQLB5QZTK4TwzjjspXSCT47DzjEaWboE8aX3OPR7b0_-1x52rjsOux8z_HW92XXJupjdWUxvxo4wFjIpBQunjtdLhx36cRz89vpOcHdesyO8m9ec4JcLvB9P_XAlGZVByAJJ_wHq1Gpm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Dagum, Estela Bee ; Bianconcini, Silvia</creator><creatorcontrib>Dagum, Estela Bee ; Bianconcini, Silvia</creatorcontrib><description>For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policymaking viewpoint, they are too slow in detecting true turning points. In this paper, we use a reproducing kernel methodology to derive asymmetric filters that converge quickly and monotonically to the corresponding symmetric one. We show theoretically that proposed criteria for time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Musgrave filters from the viewpoint of revisions and time delay to detect true turning points. We use a set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains statistical agencies could have by also using our methods in their practice.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/15-AOAS856</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Musgrave filters ; Recession and recovery analysis ; reproducing kernels ; seasonally adjusted data ; time-varying bandwidth selection ; US economy</subject><ispartof>The annals of applied statistics, 2015-09, Vol.9 (3), p.1433-1458</ispartof><rights>Copyright © 2015 Institute of Mathematical Statistics</rights><rights>Copyright 2015 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-336ef0c0d9d86c3e70597a4c3be0ba92758b03c777edad0e88d75b03d0dd439c3</citedby><cites>FETCH-LOGICAL-c347t-336ef0c0d9d86c3e70597a4c3be0ba92758b03c777edad0e88d75b03d0dd439c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43826428$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43826428$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Dagum, Estela Bee</creatorcontrib><creatorcontrib>Bianconcini, Silvia</creatorcontrib><title>A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME</title><title>The annals of applied statistics</title><description>For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policymaking viewpoint, they are too slow in detecting true turning points. In this paper, we use a reproducing kernel methodology to derive asymmetric filters that converge quickly and monotonically to the corresponding symmetric one. We show theoretically that proposed criteria for time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Musgrave filters from the viewpoint of revisions and time delay to detect true turning points. We use a set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains statistical agencies could have by also using our methods in their practice.</description><subject>Musgrave filters</subject><subject>Recession and recovery analysis</subject><subject>reproducing kernels</subject><subject>seasonally adjusted data</subject><subject>time-varying bandwidth selection</subject><subject>US economy</subject><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoOKcX70LOQjRpkiY9lpquxf6ANkM8lSzJYGPS0c6D_70dKzu9L-99vu_wAHgm-I0EhL0TjuI6biUPb8CCRIwgQSm-Pd80QCHh4h48jOMeY84kIwtQxbBSX7BVGtYpjNvvslS6yROY5oVWTQvTuoG6iZPPvFpBnSnYZnWj0ZSVk6-qD5hXsFFxgXReqkdwtzWH0T_NugTrVOkkQ0W9ypMJspSJE6I09FtssYucDC31AvNIGGbpxuONiQLB5QZTK4TwzjjspXSCT47DzjEaWboE8aX3OPR7b0_-1x52rjsOux8z_HW92XXJupjdWUxvxo4wFjIpBQunjtdLhx36cRz89vpOcHdesyO8m9ec4JcLvB9P_XAlGZVByAJJ_wHq1Gpm</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Dagum, Estela Bee</creator><creator>Bianconcini, Silvia</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME</title><author>Dagum, Estela Bee ; Bianconcini, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-336ef0c0d9d86c3e70597a4c3be0ba92758b03c777edad0e88d75b03d0dd439c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Musgrave filters</topic><topic>Recession and recovery analysis</topic><topic>reproducing kernels</topic><topic>seasonally adjusted data</topic><topic>time-varying bandwidth selection</topic><topic>US economy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagum, Estela Bee</creatorcontrib><creatorcontrib>Bianconcini, Silvia</creatorcontrib><collection>CrossRef</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagum, Estela Bee</au><au>Bianconcini, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME</atitle><jtitle>The annals of applied statistics</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>9</volume><issue>3</issue><spage>1433</spage><epage>1458</epage><pages>1433-1458</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policymaking viewpoint, they are too slow in detecting true turning points. In this paper, we use a reproducing kernel methodology to derive asymmetric filters that converge quickly and monotonically to the corresponding symmetric one. We show theoretically that proposed criteria for time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Musgrave filters from the viewpoint of revisions and time delay to detect true turning points. We use a set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains statistical agencies could have by also using our methods in their practice.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOAS856</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6157
ispartof The annals of applied statistics, 2015-09, Vol.9 (3), p.1433-1458
issn 1932-6157
1941-7330
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1446488746
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Musgrave filters
Recession and recovery analysis
reproducing kernels
seasonally adjusted data
time-varying bandwidth selection
US economy
title A NEW SET OF ASYMMETRIC FILTERS FOR TRACKING THE SHORT-TERM TREND IN REAL-TIME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NEW%20SET%20OF%20ASYMMETRIC%20FILTERS%20FOR%20TRACKING%20THE%20SHORT-TERM%20TREND%20IN%20REAL-TIME&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Dagum,%20Estela%20Bee&rft.date=2015-09-01&rft.volume=9&rft.issue=3&rft.spage=1433&rft.epage=1458&rft.pages=1433-1458&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/15-AOAS856&rft_dat=%3Cjstor_proje%3E43826428%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43826428&rfr_iscdi=true