MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES

We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which ari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The annals of applied statistics 2015-06, Vol.9 (2), p.547-571
Hauptverfasser: Cahill, Niamh, Kemp, Andrew C., Horton, Benjamin P., Parnell, Andrew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 2
container_start_page 547
container_title The annals of applied statistics
container_volume 9
creator Cahill, Niamh
Kemp, Andrew C.
Horton, Benjamin P.
Parnell, Andrew C.
description We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.
doi_str_mv 10.1214/15-AOAS824
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1437397101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24522592</jstor_id><sourcerecordid>24522592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-54facc4841e5f321c55286ffd9d849902487eb3994886515a5803b143b5a9c3f3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AUxBdRsFYv3oWchdV9-9HsHtd0TQMx0WzTa9huE2ippCT10P_ehoae5jHM_HgMQs9A3oACfweBda6tpPwGTUBxwCFj5Ha4GcUzEOE9euj7HSGCSw4T9POVz02aZHFgjcapWZk0iBY6i01Q2sE2RZEXFicZXuki0R-psUGSLU1c6KWZB7EurU10FnwXeWSsNfYR3TVu39dPo05R-WmW0QKneZxEOsWe8fCIBW-c98MTtWgYBS8ElbOm2aiN5EoRymVYr5lSXMqZAOGEJGwNnK2FU541bIr0hXvo2l3tj_Wf32831aHb_rruVLVuW0VlOrqjuNb11ZkRMhUCgTPj9cLwXdv3Xd1c60CqYdAKRDUOeg6_XMK7_th21yTlglKhKPsHzUhqZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES</title><source>Jstor Complete Legacy</source><source>Project Euclid</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Cahill, Niamh ; Kemp, Andrew C. ; Horton, Benjamin P. ; Parnell, Andrew C.</creator><creatorcontrib>Cahill, Niamh ; Kemp, Andrew C. ; Horton, Benjamin P. ; Parnell, Andrew C.</creatorcontrib><description>We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/15-AOAS824</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Bayesian statistics ; errors-in-variables ; integrated Gaussian processes ; proxy reconstruction ; tide gauge</subject><ispartof>The annals of applied statistics, 2015-06, Vol.9 (2), p.547-571</ispartof><rights>Copyright © 2015 Institute of Mathematical Statistics</rights><rights>Copyright 2015 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-54facc4841e5f321c55286ffd9d849902487eb3994886515a5803b143b5a9c3f3</citedby><cites>FETCH-LOGICAL-c347t-54facc4841e5f321c55286ffd9d849902487eb3994886515a5803b143b5a9c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24522592$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24522592$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Cahill, Niamh</creatorcontrib><creatorcontrib>Kemp, Andrew C.</creatorcontrib><creatorcontrib>Horton, Benjamin P.</creatorcontrib><creatorcontrib>Parnell, Andrew C.</creatorcontrib><title>MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES</title><title>The annals of applied statistics</title><description>We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.</description><subject>Bayesian statistics</subject><subject>errors-in-variables</subject><subject>integrated Gaussian processes</subject><subject>proxy reconstruction</subject><subject>tide gauge</subject><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AUxBdRsFYv3oWchdV9-9HsHtd0TQMx0WzTa9huE2ippCT10P_ehoae5jHM_HgMQs9A3oACfweBda6tpPwGTUBxwCFj5Ha4GcUzEOE9euj7HSGCSw4T9POVz02aZHFgjcapWZk0iBY6i01Q2sE2RZEXFicZXuki0R-psUGSLU1c6KWZB7EurU10FnwXeWSsNfYR3TVu39dPo05R-WmW0QKneZxEOsWe8fCIBW-c98MTtWgYBS8ElbOm2aiN5EoRymVYr5lSXMqZAOGEJGwNnK2FU541bIr0hXvo2l3tj_Wf32831aHb_rruVLVuW0VlOrqjuNb11ZkRMhUCgTPj9cLwXdv3Xd1c60CqYdAKRDUOeg6_XMK7_th21yTlglKhKPsHzUhqZg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Cahill, Niamh</creator><creator>Kemp, Andrew C.</creator><creator>Horton, Benjamin P.</creator><creator>Parnell, Andrew C.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150601</creationdate><title>MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES</title><author>Cahill, Niamh ; Kemp, Andrew C. ; Horton, Benjamin P. ; Parnell, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-54facc4841e5f321c55286ffd9d849902487eb3994886515a5803b143b5a9c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian statistics</topic><topic>errors-in-variables</topic><topic>integrated Gaussian processes</topic><topic>proxy reconstruction</topic><topic>tide gauge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cahill, Niamh</creatorcontrib><creatorcontrib>Kemp, Andrew C.</creatorcontrib><creatorcontrib>Horton, Benjamin P.</creatorcontrib><creatorcontrib>Parnell, Andrew C.</creatorcontrib><collection>CrossRef</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cahill, Niamh</au><au>Kemp, Andrew C.</au><au>Horton, Benjamin P.</au><au>Parnell, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES</atitle><jtitle>The annals of applied statistics</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>9</volume><issue>2</issue><spage>547</spage><epage>571</epage><pages>547-571</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOAS824</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6157
ispartof The annals of applied statistics, 2015-06, Vol.9 (2), p.547-571
issn 1932-6157
1941-7330
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1437397101
source Jstor Complete Legacy; Project Euclid; Alma/SFX Local Collection; JSTOR; EZB Electronic Journals Library
subjects Bayesian statistics
errors-in-variables
integrated Gaussian processes
proxy reconstruction
tide gauge
title MODELING SEA-LEVEL CHANGE USING ERRORS-IN-VARIABLES INTEGRATED GAUSSIAN PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20SEA-LEVEL%20CHANGE%20USING%20ERRORS-IN-VARIABLES%20INTEGRATED%20GAUSSIAN%20PROCESSES&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Cahill,%20Niamh&rft.date=2015-06-01&rft.volume=9&rft.issue=2&rft.spage=547&rft.epage=571&rft.pages=547-571&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/15-AOAS824&rft_dat=%3Cjstor_proje%3E24522592%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24522592&rfr_iscdi=true