Finding Large Average Submatrices in High Dimensional Data
The search for sample-variable associations is an important problem in the exploratory analysis of high dimensional data. Biclustering methods search for sample-variable associations in the form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix need not be contigu...
Gespeichert in:
Veröffentlicht in: | The annals of applied statistics 2009-09, Vol.3 (3), p.985-1012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 3 |
container_start_page | 985 |
container_title | The annals of applied statistics |
container_volume | 3 |
creator | Shabalin, Andrey A. Weigman, Victor J. Perou, Charles M. Nobel, Andrew B. |
description | The search for sample-variable associations is an important problem in the exploratory analysis of high dimensional data. Biclustering methods search for sample-variable associations in the form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix need not be contiguous.) In this paper we propose and evaluate a statistically motivated biclustering procedure (LAS) that finds large average submatrices within a given real-valued data matrix. The procedure operates in an iterative-residual fashion, and is driven by a Bonferroni-based significance score that effectively trades off between submatrix size and average value. We examine the performance and potential utility of LAS, and compare it with a number of existing methods, through an extensive three-part validation study using two gene expression datasets. The validation study examines quantitative properties of biclusters, biological and clinical assessments using auxiliary information, and classification of disease subtypes using bicluster membership. In addition, we carry out a simulation study to assess the effectiveness and noise sensitivity of the LAS search procedure. These results suggest that LAS is an effective exploratory tool for the discovery of biologically relevant structures in high dimensional data. |
doi_str_mv | 10.1214/09-AOAS239 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1254773275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30242874</jstor_id><sourcerecordid>30242874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2ff2db98671da70c0f7a74d421119277c7af3cfe7028a54ec60ad9c9acb09e7c3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFYv3oVcvAjR_Uom6y2k1gqBHmrPYbrZrVvSpOymgv-9KQ09vWHmvd_AI-SR0VfGmXyjKs6X-YoLdUUmTEkWgxD0-jQLHqcsgVtyF8KO0kRmkk3I-9y1tWu3UYl-a6L813gcdHXc7LH3TpsQuTZauO1PNHN70wbXtdhEM-zxntxYbIJ5GHVK1vOP72IRl8vPryIvYy0A-phby-uNylJgNQLV1AKCrCVnjCkOoAGt0NYA5Rkm0uiUYq20Qr2hyoAWU5KfuQff7YzuzVE3rq4O3u3R_1UduqpYl-N2FOwwVIwnEkBwSAbGy5mhfReCN_YSZ7Q6NVdRVY3NDebn8SEGjY312GoXLgnOqUwoTwff09m3C33nL3dBueQZSPEPKtR3Pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding Large Average Submatrices in High Dimensional Data</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Shabalin, Andrey A. ; Weigman, Victor J. ; Perou, Charles M. ; Nobel, Andrew B.</creator><creatorcontrib>Shabalin, Andrey A. ; Weigman, Victor J. ; Perou, Charles M. ; Nobel, Andrew B.</creatorcontrib><description>The search for sample-variable associations is an important problem in the exploratory analysis of high dimensional data. Biclustering methods search for sample-variable associations in the form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix need not be contiguous.) In this paper we propose and evaluate a statistically motivated biclustering procedure (LAS) that finds large average submatrices within a given real-valued data matrix. The procedure operates in an iterative-residual fashion, and is driven by a Bonferroni-based significance score that effectively trades off between submatrix size and average value. We examine the performance and potential utility of LAS, and compare it with a number of existing methods, through an extensive three-part validation study using two gene expression datasets. The validation study examines quantitative properties of biclusters, biological and clinical assessments using auxiliary information, and classification of disease subtypes using bicluster membership. In addition, we carry out a simulation study to assess the effectiveness and noise sensitivity of the LAS search procedure. These results suggest that LAS is an effective exploratory tool for the discovery of biologically relevant structures in high dimensional data.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/09-AOAS239</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Arithmetic mean ; Biclustering ; Breast cancer ; Calculus of variations and optimal control ; classification ; Correlations ; Datasets ; Exact sciences and technology ; Gene expression ; Genes ; Information search ; lung cancer ; Mathematical analysis ; Mathematics ; microarray ; Multivariate analysis ; P values ; Probability and statistics ; Samba ; Sciences and techniques of general use ; Statistics</subject><ispartof>The annals of applied statistics, 2009-09, Vol.3 (3), p.985-1012</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2ff2db98671da70c0f7a74d421119277c7af3cfe7028a54ec60ad9c9acb09e7c3</citedby><cites>FETCH-LOGICAL-c377t-2ff2db98671da70c0f7a74d421119277c7af3cfe7028a54ec60ad9c9acb09e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30242874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30242874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229,79752,79760</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22045026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabalin, Andrey A.</creatorcontrib><creatorcontrib>Weigman, Victor J.</creatorcontrib><creatorcontrib>Perou, Charles M.</creatorcontrib><creatorcontrib>Nobel, Andrew B.</creatorcontrib><title>Finding Large Average Submatrices in High Dimensional Data</title><title>The annals of applied statistics</title><description>The search for sample-variable associations is an important problem in the exploratory analysis of high dimensional data. Biclustering methods search for sample-variable associations in the form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix need not be contiguous.) In this paper we propose and evaluate a statistically motivated biclustering procedure (LAS) that finds large average submatrices within a given real-valued data matrix. The procedure operates in an iterative-residual fashion, and is driven by a Bonferroni-based significance score that effectively trades off between submatrix size and average value. We examine the performance and potential utility of LAS, and compare it with a number of existing methods, through an extensive three-part validation study using two gene expression datasets. The validation study examines quantitative properties of biclusters, biological and clinical assessments using auxiliary information, and classification of disease subtypes using bicluster membership. In addition, we carry out a simulation study to assess the effectiveness and noise sensitivity of the LAS search procedure. These results suggest that LAS is an effective exploratory tool for the discovery of biologically relevant structures in high dimensional data.</description><subject>Algorithms</subject><subject>Arithmetic mean</subject><subject>Biclustering</subject><subject>Breast cancer</subject><subject>Calculus of variations and optimal control</subject><subject>classification</subject><subject>Correlations</subject><subject>Datasets</subject><subject>Exact sciences and technology</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Information search</subject><subject>lung cancer</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>microarray</subject><subject>Multivariate analysis</subject><subject>P values</subject><subject>Probability and statistics</subject><subject>Samba</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFYv3oVcvAjR_Uom6y2k1gqBHmrPYbrZrVvSpOymgv-9KQ09vWHmvd_AI-SR0VfGmXyjKs6X-YoLdUUmTEkWgxD0-jQLHqcsgVtyF8KO0kRmkk3I-9y1tWu3UYl-a6L813gcdHXc7LH3TpsQuTZauO1PNHN70wbXtdhEM-zxntxYbIJ5GHVK1vOP72IRl8vPryIvYy0A-phby-uNylJgNQLV1AKCrCVnjCkOoAGt0NYA5Rkm0uiUYq20Qr2hyoAWU5KfuQff7YzuzVE3rq4O3u3R_1UduqpYl-N2FOwwVIwnEkBwSAbGy5mhfReCN_YSZ7Q6NVdRVY3NDebn8SEGjY312GoXLgnOqUwoTwff09m3C33nL3dBueQZSPEPKtR3Pg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Shabalin, Andrey A.</creator><creator>Weigman, Victor J.</creator><creator>Perou, Charles M.</creator><creator>Nobel, Andrew B.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090901</creationdate><title>Finding Large Average Submatrices in High Dimensional Data</title><author>Shabalin, Andrey A. ; Weigman, Victor J. ; Perou, Charles M. ; Nobel, Andrew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2ff2db98671da70c0f7a74d421119277c7af3cfe7028a54ec60ad9c9acb09e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Arithmetic mean</topic><topic>Biclustering</topic><topic>Breast cancer</topic><topic>Calculus of variations and optimal control</topic><topic>classification</topic><topic>Correlations</topic><topic>Datasets</topic><topic>Exact sciences and technology</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Information search</topic><topic>lung cancer</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>microarray</topic><topic>Multivariate analysis</topic><topic>P values</topic><topic>Probability and statistics</topic><topic>Samba</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabalin, Andrey A.</creatorcontrib><creatorcontrib>Weigman, Victor J.</creatorcontrib><creatorcontrib>Perou, Charles M.</creatorcontrib><creatorcontrib>Nobel, Andrew B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabalin, Andrey A.</au><au>Weigman, Victor J.</au><au>Perou, Charles M.</au><au>Nobel, Andrew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Large Average Submatrices in High Dimensional Data</atitle><jtitle>The annals of applied statistics</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>3</volume><issue>3</issue><spage>985</spage><epage>1012</epage><pages>985-1012</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>The search for sample-variable associations is an important problem in the exploratory analysis of high dimensional data. Biclustering methods search for sample-variable associations in the form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix need not be contiguous.) In this paper we propose and evaluate a statistically motivated biclustering procedure (LAS) that finds large average submatrices within a given real-valued data matrix. The procedure operates in an iterative-residual fashion, and is driven by a Bonferroni-based significance score that effectively trades off between submatrix size and average value. We examine the performance and potential utility of LAS, and compare it with a number of existing methods, through an extensive three-part validation study using two gene expression datasets. The validation study examines quantitative properties of biclusters, biological and clinical assessments using auxiliary information, and classification of disease subtypes using bicluster membership. In addition, we carry out a simulation study to assess the effectiveness and noise sensitivity of the LAS search procedure. These results suggest that LAS is an effective exploratory tool for the discovery of biologically relevant structures in high dimensional data.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/09-AOAS239</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6157 |
ispartof | The annals of applied statistics, 2009-09, Vol.3 (3), p.985-1012 |
issn | 1932-6157 1941-7330 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoas_1254773275 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Algorithms Arithmetic mean Biclustering Breast cancer Calculus of variations and optimal control classification Correlations Datasets Exact sciences and technology Gene expression Genes Information search lung cancer Mathematical analysis Mathematics microarray Multivariate analysis P values Probability and statistics Samba Sciences and techniques of general use Statistics |
title | Finding Large Average Submatrices in High Dimensional Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Large%20Average%20Submatrices%20in%20High%20Dimensional%20Data&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Shabalin,%20Andrey%20A.&rft.date=2009-09-01&rft.volume=3&rft.issue=3&rft.spage=985&rft.epage=1012&rft.pages=985-1012&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/09-AOAS239&rft_dat=%3Cjstor_proje%3E30242874%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30242874&rfr_iscdi=true |