LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES

We investigate the well-posedness and asymptotic self-similarity of solutions to a generalized Smoluchowski coagulation equation recently introduced by Bertoin and Le Gall in the context of continuous-state branching theory. In particular, this equation governs the evolution of the Lévy measure of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2015-04, Vol.25 (2), p.675-713
Hauptverfasser: Iyer, Gautam, Leger, Nicholas, Pego, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 2
container_start_page 675
container_title The Annals of applied probability
container_volume 25
creator Iyer, Gautam
Leger, Nicholas
Pego, Robert L.
description We investigate the well-posedness and asymptotic self-similarity of solutions to a generalized Smoluchowski coagulation equation recently introduced by Bertoin and Le Gall in the context of continuous-state branching theory. In particular, this equation governs the evolution of the Lévy measure of a critical continuous-state branching process which becomes extinct (i.e., is absorbed at zero) almost surely. We show that a nondegenerate scaling limit of the Lévy measure (and the process) exists if and only if the branching mechanism is regularly varying at 0. When the branching mechanism is regularly varying, we characterize nondegenerate scaling limits of arbitrary finite-measure solutions in terms of generalized Mittag–Leffler series.
doi_str_mv 10.1214/14-AAP1008
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1424355128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24519932</jstor_id><sourcerecordid>24519932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3fb343f2397c50e532acd43b76f0f7ff8e75a199d46c333c5650e42d06a680ff3</originalsourceid><addsrcrecordid>eNo9kU1rg0AQhpfSQtO0l94LC70VbPdbPdqNiUvVDa4SehJjXEhoa6rm0H9fQ0JOAzMPz8zwAvCI0SsmmL1h5gTBEiPkXYEJwcJzPJe612CCEUcOx4Ldgru-3yGEfOa7E2Bjlagc5lGoszAxcK4zaBIdFzLSK_Oh4OwzDRIlDQyM0VIFeTiDK5VHUGYqVzKIodRprtJCF8Yx-TiH71mQykilC7jMtAyNCc09uLHVV988nOsUFPMwl5ET68VR4tTU5YND7Zoyagn13ZqjhlNS1RtG166wyLrWeo3LK-z7GyZqSmnNxUgxskGiEh6ylk5BcPLuu3bX1ENzqL-2m3Lfbb-r7q9sq20pi_jcPZeqrfYlZoRRzjHxRsfzxfF7aPqh3LWH7mc8u8SCewwTgsRIvZyoumv7vmvsZQlG5TGLUVmesxjhpxO864e2u5CE8fEZSug_HeR8zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658412206</pqid></control><display><type>article</type><title>LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Iyer, Gautam ; Leger, Nicholas ; Pego, Robert L.</creator><creatorcontrib>Iyer, Gautam ; Leger, Nicholas ; Pego, Robert L.</creatorcontrib><description>We investigate the well-posedness and asymptotic self-similarity of solutions to a generalized Smoluchowski coagulation equation recently introduced by Bertoin and Le Gall in the context of continuous-state branching theory. In particular, this equation governs the evolution of the Lévy measure of a critical continuous-state branching process which becomes extinct (i.e., is absorbed at zero) almost surely. We show that a nondegenerate scaling limit of the Lévy measure (and the process) exists if and only if the branching mechanism is regularly varying at 0. When the branching mechanism is regularly varying, we characterize nondegenerate scaling limits of arbitrary finite-measure solutions in terms of generalized Mittag–Leffler series.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/14-AAP1008</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>35Q70 ; 60G18 ; 60J80 ; 82C28 ; Asymptotic methods ; Bernstein function ; coagulation ; Continuous-state branching process ; critical branching ; limit theorem ; Mittag–Leffler series ; regular variation ; scaling limit ; self-similar solution ; Smoluchowski equation ; Theorems</subject><ispartof>The Annals of applied probability, 2015-04, Vol.25 (2), p.675-713</ispartof><rights>Copyright © 2015 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Apr 2015</rights><rights>Copyright 2015 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3fb343f2397c50e532acd43b76f0f7ff8e75a199d46c333c5650e42d06a680ff3</citedby><cites>FETCH-LOGICAL-c375t-3fb343f2397c50e532acd43b76f0f7ff8e75a199d46c333c5650e42d06a680ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24519932$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24519932$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Iyer, Gautam</creatorcontrib><creatorcontrib>Leger, Nicholas</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><title>LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES</title><title>The Annals of applied probability</title><description>We investigate the well-posedness and asymptotic self-similarity of solutions to a generalized Smoluchowski coagulation equation recently introduced by Bertoin and Le Gall in the context of continuous-state branching theory. In particular, this equation governs the evolution of the Lévy measure of a critical continuous-state branching process which becomes extinct (i.e., is absorbed at zero) almost surely. We show that a nondegenerate scaling limit of the Lévy measure (and the process) exists if and only if the branching mechanism is regularly varying at 0. When the branching mechanism is regularly varying, we characterize nondegenerate scaling limits of arbitrary finite-measure solutions in terms of generalized Mittag–Leffler series.</description><subject>35Q70</subject><subject>60G18</subject><subject>60J80</subject><subject>82C28</subject><subject>Asymptotic methods</subject><subject>Bernstein function</subject><subject>coagulation</subject><subject>Continuous-state branching process</subject><subject>critical branching</subject><subject>limit theorem</subject><subject>Mittag–Leffler series</subject><subject>regular variation</subject><subject>scaling limit</subject><subject>self-similar solution</subject><subject>Smoluchowski equation</subject><subject>Theorems</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kU1rg0AQhpfSQtO0l94LC70VbPdbPdqNiUvVDa4SehJjXEhoa6rm0H9fQ0JOAzMPz8zwAvCI0SsmmL1h5gTBEiPkXYEJwcJzPJe612CCEUcOx4Ldgru-3yGEfOa7E2Bjlagc5lGoszAxcK4zaBIdFzLSK_Oh4OwzDRIlDQyM0VIFeTiDK5VHUGYqVzKIodRprtJCF8Yx-TiH71mQykilC7jMtAyNCc09uLHVV988nOsUFPMwl5ET68VR4tTU5YND7Zoyagn13ZqjhlNS1RtG166wyLrWeo3LK-z7GyZqSmnNxUgxskGiEh6ylk5BcPLuu3bX1ENzqL-2m3Lfbb-r7q9sq20pi_jcPZeqrfYlZoRRzjHxRsfzxfF7aPqh3LWH7mc8u8SCewwTgsRIvZyoumv7vmvsZQlG5TGLUVmesxjhpxO864e2u5CE8fEZSug_HeR8zQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Iyer, Gautam</creator><creator>Leger, Nicholas</creator><creator>Pego, Robert L.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20150401</creationdate><title>LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES</title><author>Iyer, Gautam ; Leger, Nicholas ; Pego, Robert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3fb343f2397c50e532acd43b76f0f7ff8e75a199d46c333c5650e42d06a680ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>35Q70</topic><topic>60G18</topic><topic>60J80</topic><topic>82C28</topic><topic>Asymptotic methods</topic><topic>Bernstein function</topic><topic>coagulation</topic><topic>Continuous-state branching process</topic><topic>critical branching</topic><topic>limit theorem</topic><topic>Mittag–Leffler series</topic><topic>regular variation</topic><topic>scaling limit</topic><topic>self-similar solution</topic><topic>Smoluchowski equation</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Gautam</creatorcontrib><creatorcontrib>Leger, Nicholas</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Gautam</au><au>Leger, Nicholas</au><au>Pego, Robert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES</atitle><jtitle>The Annals of applied probability</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>25</volume><issue>2</issue><spage>675</spage><epage>713</epage><pages>675-713</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We investigate the well-posedness and asymptotic self-similarity of solutions to a generalized Smoluchowski coagulation equation recently introduced by Bertoin and Le Gall in the context of continuous-state branching theory. In particular, this equation governs the evolution of the Lévy measure of a critical continuous-state branching process which becomes extinct (i.e., is absorbed at zero) almost surely. We show that a nondegenerate scaling limit of the Lévy measure (and the process) exists if and only if the branching mechanism is regularly varying at 0. When the branching mechanism is regularly varying, we characterize nondegenerate scaling limits of arbitrary finite-measure solutions in terms of generalized Mittag–Leffler series.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/14-AAP1008</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2015-04, Vol.25 (2), p.675-713
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1424355128
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 35Q70
60G18
60J80
82C28
Asymptotic methods
Bernstein function
coagulation
Continuous-state branching process
critical branching
limit theorem
Mittag–Leffler series
regular variation
scaling limit
self-similar solution
Smoluchowski equation
Theorems
title LIMIT THEOREMS FOR SMOLUCHOWSKI DYNAMICS ASSOCIATED WITH CRITICAL CONTINUOUS-STATE BRANCHING PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIMIT%20THEOREMS%20FOR%20SMOLUCHOWSKI%20DYNAMICS%20ASSOCIATED%20WITH%20CRITICAL%20CONTINUOUS-STATE%20BRANCHING%20PROCESSES&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Iyer,%20Gautam&rft.date=2015-04-01&rft.volume=25&rft.issue=2&rft.spage=675&rft.epage=713&rft.pages=675-713&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/14-AAP1008&rft_dat=%3Cjstor_proje%3E24519932%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658412206&rft_id=info:pmid/&rft_jstor_id=24519932&rfr_iscdi=true