RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION

This paper presents the link between stochastic approximation and clinical trials based on randomized urn models investigated by Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl. Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal. 81 (2002) 1–18]. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2013-08, Vol.23 (4), p.1409-1436
Hauptverfasser: Laruelle, Sophie, Pagès, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1436
container_issue 4
container_start_page 1409
container_title The Annals of applied probability
container_volume 23
creator Laruelle, Sophie
Pagès, Gilles
description This paper presents the link between stochastic approximation and clinical trials based on randomized urn models investigated by Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl. Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal. 81 (2002) 1–18]. We reformulate the dynamics of both the urn composition and the assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality [central limit theorem (CLT)] of the normalized procedure under less stringent assumptions by calling upon the ODE and SDE methods. As a second step, we investigate a more involved family of models, known as multi-arm clinical trials, where the urn updating depends on the past performances of the treatments. By increasing the dimension of the state vector, our SA approach provides this time a new asymptotic normality result.
doi_str_mv 10.1214/12-AAP875
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1371834033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23474805</jstor_id><sourcerecordid>23474805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d3f347ba8a26c8aaf9b35146acab945097198ef172418414eb1a96e4c84bb62d3</originalsourceid><addsrcrecordid>eNpVkU1Lw0AQhhdRsH4c_AFCwJOH6M5-ZHcvwpLGNpAmJUlFvIRNmmBDNTVpBf-9KSkVLzPw8s4zzLwI3QB-AALsEYit9VwKfoJGBBxpS0HFKRoB5tjm4LBzdNF1NcZYMSVG6CnW4Tia-W_e2FrEoTWLxl6QWLH34id-uhcTP5xYSRq5U52kvmvp-TyOXv2ZTv0ovEJnlVl35fWhX6LFs5e6UzuIJr6rA7ugArb2klaUidxIQ5xCGlOpnHJgjilMrhjHSoCSZQWCMJAMWJmDUU7JCsny3CFLeon0wN20TV0W23JXrFfLbNOuPkz7kzVmlbmL4KAemmnMJoN-v6QMU9oz7gfGu1n_m5zqINtrGHPOBSffTu-9O-772pXdNqubXfvZn9gTlQLFKMF_xKJtuq4tqyMWcLaPoy_ZEEfvvR28dbdt2qOR9H9hEnP6C5wUfxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399194320</pqid></control><display><type>article</type><title>RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Laruelle, Sophie ; Pagès, Gilles</creator><creatorcontrib>Laruelle, Sophie ; Pagès, Gilles</creatorcontrib><description>This paper presents the link between stochastic approximation and clinical trials based on randomized urn models investigated by Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl. Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal. 81 (2002) 1–18]. We reformulate the dynamics of both the urn composition and the assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality [central limit theorem (CLT)] of the normalized procedure under less stringent assumptions by calling upon the ODE and SDE methods. As a second step, we investigate a more involved family of models, known as multi-arm clinical trials, where the urn updating depends on the past performances of the treatments. By increasing the dimension of the state vector, our SA approach provides this time a new asymptotic normality result.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/12-AAP875</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62E20 ; 62F12 ; 62L05 ; 62L20 ; 62P10 ; adaptive asset allocation ; Approximation ; Asymptotic methods ; asymptotic normality ; Central limit theorem ; Clinical trials ; Eigenvalues ; extended Pólya urn models ; Martingales ; Mathematical theorems ; Mathematics ; Matrices ; multi-arm clinical trials ; nonhomogeneous generating matrix ; Odes ; Perceptron convergence procedure ; Probability ; Randomized algorithms ; Stochastic approximation ; Stochastic models ; strong consistency ; Theorems ; Vector space</subject><ispartof>The Annals of applied probability, 2013-08, Vol.23 (4), p.1409-1436</ispartof><rights>Copyright © 2013 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Aug 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2013 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d3f347ba8a26c8aaf9b35146acab945097198ef172418414eb1a96e4c84bb62d3</citedby><cites>FETCH-LOGICAL-c371t-d3f347ba8a26c8aaf9b35146acab945097198ef172418414eb1a96e4c84bb62d3</cites><orcidid>0000-0001-6487-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23474805$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23474805$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00555752$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laruelle, Sophie</creatorcontrib><creatorcontrib>Pagès, Gilles</creatorcontrib><title>RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION</title><title>The Annals of applied probability</title><description>This paper presents the link between stochastic approximation and clinical trials based on randomized urn models investigated by Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl. Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal. 81 (2002) 1–18]. We reformulate the dynamics of both the urn composition and the assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality [central limit theorem (CLT)] of the normalized procedure under less stringent assumptions by calling upon the ODE and SDE methods. As a second step, we investigate a more involved family of models, known as multi-arm clinical trials, where the urn updating depends on the past performances of the treatments. By increasing the dimension of the state vector, our SA approach provides this time a new asymptotic normality result.</description><subject>62E20</subject><subject>62F12</subject><subject>62L05</subject><subject>62L20</subject><subject>62P10</subject><subject>adaptive asset allocation</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>asymptotic normality</subject><subject>Central limit theorem</subject><subject>Clinical trials</subject><subject>Eigenvalues</subject><subject>extended Pólya urn models</subject><subject>Martingales</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>multi-arm clinical trials</subject><subject>nonhomogeneous generating matrix</subject><subject>Odes</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Randomized algorithms</subject><subject>Stochastic approximation</subject><subject>Stochastic models</subject><subject>strong consistency</subject><subject>Theorems</subject><subject>Vector space</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkU1Lw0AQhhdRsH4c_AFCwJOH6M5-ZHcvwpLGNpAmJUlFvIRNmmBDNTVpBf-9KSkVLzPw8s4zzLwI3QB-AALsEYit9VwKfoJGBBxpS0HFKRoB5tjm4LBzdNF1NcZYMSVG6CnW4Tia-W_e2FrEoTWLxl6QWLH34id-uhcTP5xYSRq5U52kvmvp-TyOXv2ZTv0ovEJnlVl35fWhX6LFs5e6UzuIJr6rA7ugArb2klaUidxIQ5xCGlOpnHJgjilMrhjHSoCSZQWCMJAMWJmDUU7JCsny3CFLeon0wN20TV0W23JXrFfLbNOuPkz7kzVmlbmL4KAemmnMJoN-v6QMU9oz7gfGu1n_m5zqINtrGHPOBSffTu-9O-772pXdNqubXfvZn9gTlQLFKMF_xKJtuq4tqyMWcLaPoy_ZEEfvvR28dbdt2qOR9H9hEnP6C5wUfxg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Laruelle, Sophie</creator><creator>Pagès, Gilles</creator><general>Institute of Mathematical Statistics</general><general>Institute of Mathematical Statistics (IMS)</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6487-3079</orcidid></search><sort><creationdate>20130801</creationdate><title>RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION</title><author>Laruelle, Sophie ; Pagès, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d3f347ba8a26c8aaf9b35146acab945097198ef172418414eb1a96e4c84bb62d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>62E20</topic><topic>62F12</topic><topic>62L05</topic><topic>62L20</topic><topic>62P10</topic><topic>adaptive asset allocation</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>asymptotic normality</topic><topic>Central limit theorem</topic><topic>Clinical trials</topic><topic>Eigenvalues</topic><topic>extended Pólya urn models</topic><topic>Martingales</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>multi-arm clinical trials</topic><topic>nonhomogeneous generating matrix</topic><topic>Odes</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Randomized algorithms</topic><topic>Stochastic approximation</topic><topic>Stochastic models</topic><topic>strong consistency</topic><topic>Theorems</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laruelle, Sophie</creatorcontrib><creatorcontrib>Pagès, Gilles</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laruelle, Sophie</au><au>Pagès, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION</atitle><jtitle>The Annals of applied probability</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>23</volume><issue>4</issue><spage>1409</spage><epage>1436</epage><pages>1409-1436</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>This paper presents the link between stochastic approximation and clinical trials based on randomized urn models investigated by Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl. Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal. 81 (2002) 1–18]. We reformulate the dynamics of both the urn composition and the assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence and the asymptotic normality [central limit theorem (CLT)] of the normalized procedure under less stringent assumptions by calling upon the ODE and SDE methods. As a second step, we investigate a more involved family of models, known as multi-arm clinical trials, where the urn updating depends on the past performances of the treatments. By increasing the dimension of the state vector, our SA approach provides this time a new asymptotic normality result.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/12-AAP875</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-6487-3079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2013-08, Vol.23 (4), p.1409-1436
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1371834033
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62E20
62F12
62L05
62L20
62P10
adaptive asset allocation
Approximation
Asymptotic methods
asymptotic normality
Central limit theorem
Clinical trials
Eigenvalues
extended Pólya urn models
Martingales
Mathematical theorems
Mathematics
Matrices
multi-arm clinical trials
nonhomogeneous generating matrix
Odes
Perceptron convergence procedure
Probability
Randomized algorithms
Stochastic approximation
Stochastic models
strong consistency
Theorems
Vector space
title RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RANDOMIZED%20URN%20MODELS%20REVISITED%20USING%20STOCHASTIC%20APPROXIMATION&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Laruelle,%20Sophie&rft.date=2013-08-01&rft.volume=23&rft.issue=4&rft.spage=1409&rft.epage=1436&rft.pages=1409-1436&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/12-AAP875&rft_dat=%3Cjstor_proje%3E23474805%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399194320&rft_id=info:pmid/&rft_jstor_id=23474805&rfr_iscdi=true