Efficient Importance Sampling for Binary Contingency Tables

Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2009-06, Vol.19 (3), p.949-982
1. Verfasser: Blanchet, Jose H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 982
container_issue 3
container_start_page 949
container_title The Annals of applied probability
container_volume 19
creator Blanchet, Jose H.
description Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} > 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.
doi_str_mv 10.1214/08-AAP558
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1245071015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243608</jstor_id><sourcerecordid>30243608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</originalsourceid><addsrcrecordid>eNo9kMFKxDAURYMoOI4u_AChuHNRfa9J2xRXtYw6MKDgzDqkaSItnaYmnYV_b6TDrC5cDuc9LiG3CI-YIHsCHpflZ5ryM7JIMOMxz2l-ThYIKcQpZuySXHnfAUDBinxBnlfGtKrVwxSt96N1kxyUjr7kfuzb4Tsy1kUv7SDdb1TZYQqVHtRvtJV1r_01uTCy9_rmmEuye11tq_d48_G2rspNrBjiFGtFaYEMsqbIGDIKypiE06bQgEkBnGe1ZA3UgTBaNzXWXKXMgJGGSqQNXZJy9o7OdlpN-qD6thGja_fhMWFlK6rd5tgeQ1o5CkxYCjkCpsFxf3L8HLSfRGcPbghvC54naVgpgwA9zJBy1nunzekGgvifVwAX87yBvZvZzk_WnUAKCQsqTv8A0SZ2Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872587360</pqid></control><display><type>article</type><title>Efficient Importance Sampling for Binary Contingency Tables</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Blanchet, Jose H.</creator><creatorcontrib>Blanchet, Jose H.</creatorcontrib><description>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} &gt; 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/08-AAP558</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>05A16 ; 05C30 ; 60J20 ; 62Q05 ; 68W20 ; Algorithms ; Approximate counting ; Approximation ; Binary system ; binary tables ; bipartate graphs ; changes-of-measure ; Cost efficiency ; Cost estimates ; Design efficiency ; Doob h-transform ; Estimators ; importance sampling ; Liapunov functions ; Markov processes ; Mathematical models ; Mathematical vectors ; Probability ; Random walk ; rare-event simulation ; Sampling ; Sampling distributions</subject><ispartof>The Annals of applied probability, 2009-06, Vol.19 (3), p.949-982</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Jun 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</citedby><cites>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243608$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Blanchet, Jose H.</creatorcontrib><title>Efficient Importance Sampling for Binary Contingency Tables</title><title>The Annals of applied probability</title><description>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} &gt; 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</description><subject>05A16</subject><subject>05C30</subject><subject>60J20</subject><subject>62Q05</subject><subject>68W20</subject><subject>Algorithms</subject><subject>Approximate counting</subject><subject>Approximation</subject><subject>Binary system</subject><subject>binary tables</subject><subject>bipartate graphs</subject><subject>changes-of-measure</subject><subject>Cost efficiency</subject><subject>Cost estimates</subject><subject>Design efficiency</subject><subject>Doob h-transform</subject><subject>Estimators</subject><subject>importance sampling</subject><subject>Liapunov functions</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Probability</subject><subject>Random walk</subject><subject>rare-event simulation</subject><subject>Sampling</subject><subject>Sampling distributions</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAURYMoOI4u_AChuHNRfa9J2xRXtYw6MKDgzDqkaSItnaYmnYV_b6TDrC5cDuc9LiG3CI-YIHsCHpflZ5ryM7JIMOMxz2l-ThYIKcQpZuySXHnfAUDBinxBnlfGtKrVwxSt96N1kxyUjr7kfuzb4Tsy1kUv7SDdb1TZYQqVHtRvtJV1r_01uTCy9_rmmEuye11tq_d48_G2rspNrBjiFGtFaYEMsqbIGDIKypiE06bQgEkBnGe1ZA3UgTBaNzXWXKXMgJGGSqQNXZJy9o7OdlpN-qD6thGja_fhMWFlK6rd5tgeQ1o5CkxYCjkCpsFxf3L8HLSfRGcPbghvC54naVgpgwA9zJBy1nunzekGgvifVwAX87yBvZvZzk_WnUAKCQsqTv8A0SZ2Aw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Blanchet, Jose H.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090601</creationdate><title>Efficient Importance Sampling for Binary Contingency Tables</title><author>Blanchet, Jose H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>05A16</topic><topic>05C30</topic><topic>60J20</topic><topic>62Q05</topic><topic>68W20</topic><topic>Algorithms</topic><topic>Approximate counting</topic><topic>Approximation</topic><topic>Binary system</topic><topic>binary tables</topic><topic>bipartate graphs</topic><topic>changes-of-measure</topic><topic>Cost efficiency</topic><topic>Cost estimates</topic><topic>Design efficiency</topic><topic>Doob h-transform</topic><topic>Estimators</topic><topic>importance sampling</topic><topic>Liapunov functions</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Probability</topic><topic>Random walk</topic><topic>rare-event simulation</topic><topic>Sampling</topic><topic>Sampling distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanchet, Jose H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchet, Jose H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Importance Sampling for Binary Contingency Tables</atitle><jtitle>The Annals of applied probability</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>949</spage><epage>982</epage><pages>949-982</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} &gt; 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AAP558</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2009-06, Vol.19 (3), p.949-982
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1245071015
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 05A16
05C30
60J20
62Q05
68W20
Algorithms
Approximate counting
Approximation
Binary system
binary tables
bipartate graphs
changes-of-measure
Cost efficiency
Cost estimates
Design efficiency
Doob h-transform
Estimators
importance sampling
Liapunov functions
Markov processes
Mathematical models
Mathematical vectors
Probability
Random walk
rare-event simulation
Sampling
Sampling distributions
title Efficient Importance Sampling for Binary Contingency Tables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Importance%20Sampling%20for%20Binary%20Contingency%20Tables&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Blanchet,%20Jose%20H.&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=949&rft.epage=982&rft.pages=949-982&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/08-AAP558&rft_dat=%3Cjstor_proje%3E30243608%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872587360&rft_id=info:pmid/&rft_jstor_id=30243608&rfr_iscdi=true