Efficient Importance Sampling for Binary Contingency Tables
Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importa...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2009-06, Vol.19 (3), p.949-982 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 982 |
---|---|
container_issue | 3 |
container_start_page | 949 |
container_title | The Annals of applied probability |
container_volume | 19 |
creator | Blanchet, Jose H. |
description | Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} > 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations. |
doi_str_mv | 10.1214/08-AAP558 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1245071015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243608</jstor_id><sourcerecordid>30243608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</originalsourceid><addsrcrecordid>eNo9kMFKxDAURYMoOI4u_AChuHNRfa9J2xRXtYw6MKDgzDqkaSItnaYmnYV_b6TDrC5cDuc9LiG3CI-YIHsCHpflZ5ryM7JIMOMxz2l-ThYIKcQpZuySXHnfAUDBinxBnlfGtKrVwxSt96N1kxyUjr7kfuzb4Tsy1kUv7SDdb1TZYQqVHtRvtJV1r_01uTCy9_rmmEuye11tq_d48_G2rspNrBjiFGtFaYEMsqbIGDIKypiE06bQgEkBnGe1ZA3UgTBaNzXWXKXMgJGGSqQNXZJy9o7OdlpN-qD6thGja_fhMWFlK6rd5tgeQ1o5CkxYCjkCpsFxf3L8HLSfRGcPbghvC54naVgpgwA9zJBy1nunzekGgvifVwAX87yBvZvZzk_WnUAKCQsqTv8A0SZ2Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872587360</pqid></control><display><type>article</type><title>Efficient Importance Sampling for Binary Contingency Tables</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Blanchet, Jose H.</creator><creatorcontrib>Blanchet, Jose H.</creatorcontrib><description>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} > 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/08-AAP558</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>05A16 ; 05C30 ; 60J20 ; 62Q05 ; 68W20 ; Algorithms ; Approximate counting ; Approximation ; Binary system ; binary tables ; bipartate graphs ; changes-of-measure ; Cost efficiency ; Cost estimates ; Design efficiency ; Doob h-transform ; Estimators ; importance sampling ; Liapunov functions ; Markov processes ; Mathematical models ; Mathematical vectors ; Probability ; Random walk ; rare-event simulation ; Sampling ; Sampling distributions</subject><ispartof>The Annals of applied probability, 2009-06, Vol.19 (3), p.949-982</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Jun 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</citedby><cites>FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243608$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Blanchet, Jose H.</creatorcontrib><title>Efficient Importance Sampling for Binary Contingency Tables</title><title>The Annals of applied probability</title><description>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} > 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</description><subject>05A16</subject><subject>05C30</subject><subject>60J20</subject><subject>62Q05</subject><subject>68W20</subject><subject>Algorithms</subject><subject>Approximate counting</subject><subject>Approximation</subject><subject>Binary system</subject><subject>binary tables</subject><subject>bipartate graphs</subject><subject>changes-of-measure</subject><subject>Cost efficiency</subject><subject>Cost estimates</subject><subject>Design efficiency</subject><subject>Doob h-transform</subject><subject>Estimators</subject><subject>importance sampling</subject><subject>Liapunov functions</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Probability</subject><subject>Random walk</subject><subject>rare-event simulation</subject><subject>Sampling</subject><subject>Sampling distributions</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAURYMoOI4u_AChuHNRfa9J2xRXtYw6MKDgzDqkaSItnaYmnYV_b6TDrC5cDuc9LiG3CI-YIHsCHpflZ5ryM7JIMOMxz2l-ThYIKcQpZuySXHnfAUDBinxBnlfGtKrVwxSt96N1kxyUjr7kfuzb4Tsy1kUv7SDdb1TZYQqVHtRvtJV1r_01uTCy9_rmmEuye11tq_d48_G2rspNrBjiFGtFaYEMsqbIGDIKypiE06bQgEkBnGe1ZA3UgTBaNzXWXKXMgJGGSqQNXZJy9o7OdlpN-qD6thGja_fhMWFlK6rd5tgeQ1o5CkxYCjkCpsFxf3L8HLSfRGcPbghvC54naVgpgwA9zJBy1nunzekGgvifVwAX87yBvZvZzk_WnUAKCQsqTv8A0SZ2Aw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Blanchet, Jose H.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090601</creationdate><title>Efficient Importance Sampling for Binary Contingency Tables</title><author>Blanchet, Jose H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ec3391406d9641430cff283d9e01290886ba4d0b406feedb1b8c54f0faf3a13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>05A16</topic><topic>05C30</topic><topic>60J20</topic><topic>62Q05</topic><topic>68W20</topic><topic>Algorithms</topic><topic>Approximate counting</topic><topic>Approximation</topic><topic>Binary system</topic><topic>binary tables</topic><topic>bipartate graphs</topic><topic>changes-of-measure</topic><topic>Cost efficiency</topic><topic>Cost estimates</topic><topic>Design efficiency</topic><topic>Doob h-transform</topic><topic>Estimators</topic><topic>importance sampling</topic><topic>Liapunov functions</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Probability</topic><topic>Random walk</topic><topic>rare-event simulation</topic><topic>Sampling</topic><topic>Sampling distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanchet, Jose H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchet, Jose H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Importance Sampling for Binary Contingency Tables</atitle><jtitle>The Annals of applied probability</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>949</spage><epage>982</epage><pages>949-982</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>Importance sampling has been reported to produce algorithms with excellent empirical performance in counting problems. However, the theoretical support for its efficiency in these applications has been very limited. In this paper, we propose a methodology that can be used to design efficient importance sampling algorithms for counting and test their efficiency rigorously. We apply our techniques after transforming the problem into a rare-event simulation problem-thereby connecting complexity analysis of counting problems with efficiency in the context of rare-event simulation. As an illustration of our approach, we consider the problem of counting the number of binary tables with fixed column and row sums, $c_{j}'s$ and $r_{i}'s$ , respectively, and total marginal sums $d = \sum_{j}c_{j}$ . Assuming that $max_{j}c_{j} - o(d\sfrac{1}{2})$ , $\sumc_{j}^{2} = 0(d)$ and the $r_{j}'s$ are bounded, we show that a suitable importance sampling algorithm, proposed by Chen et al. [J. Amer Statist. Assoc. 100 (2005) 109-120], requires $O(d^{3}\varepsilon_{-2}\delta_{-1})$ operations to produce an estimate that has \varepsilon-relative error with probability $1 - \delta$ . In addition, if $max_{j}c_{j} = o(d^{\sfrac{1}{4}-\delta_{0})$ for some $\delta_{0} > 0$ , the same coverage can be guaranteed with $O(d^{3}\varepsilon^{-2} log(\delta^{-1}))$ operations.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AAP558</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2009-06, Vol.19 (3), p.949-982 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1245071015 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 05A16 05C30 60J20 62Q05 68W20 Algorithms Approximate counting Approximation Binary system binary tables bipartate graphs changes-of-measure Cost efficiency Cost estimates Design efficiency Doob h-transform Estimators importance sampling Liapunov functions Markov processes Mathematical models Mathematical vectors Probability Random walk rare-event simulation Sampling Sampling distributions |
title | Efficient Importance Sampling for Binary Contingency Tables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Importance%20Sampling%20for%20Binary%20Contingency%20Tables&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Blanchet,%20Jose%20H.&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=949&rft.epage=982&rft.pages=949-982&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/08-AAP558&rft_dat=%3Cjstor_proje%3E30243608%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872587360&rft_id=info:pmid/&rft_jstor_id=30243608&rfr_iscdi=true |