Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2

We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are &quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2008-02, Vol.18 (1), p.109-119
Hauptverfasser: van Enter, Aernout C. D., Külske, Christof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 109
container_title The Annals of applied probability
container_volume 18
creator van Enter, Aernout C. D.
Külske, Christof
description We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.
doi_str_mv 10.1214/07-AAP446
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1199890017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25442748</jstor_id><sourcerecordid>25442748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKsLP0DI1sVokkkmk4WLYdBaaFXEuh0yyQuktElJpqB_b3WKqwvvnXsWF6FrSu4oo_yeyKJp3jivTtCE0aoualnKUzShRJBC0Iqfo4uc14QQxZWcoM-XGODL5wGCARwdftfBxi2eJW09hAHPfN9nvASd9wky9gG3MQw-7OM-43kYIDl9aC6jhc3f2-IHzC7RmdObDFfHnKLV0-NH-1wsXmfztlkUpuR8KEriuDQChBbKGEqcq7kBxhTtK6iV06w0FbVCaWENc7VwVhhlFRjXO85EOUXN6N2luAYzwN5svO12yW91-u6i9l27Whyvx9BR7zpKlaoVIVQeHLejw6SYcwL3X6ek-x21I7IbRz2wNyO7zkNM_yATnDPJ6_IHlt90Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>van Enter, Aernout C. D. ; Külske, Christof</creator><creatorcontrib>van Enter, Aernout C. D. ; Külske, Christof</creatorcontrib><description>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/07-AAP446</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60K57 ; 82B24 ; 82B44 ; Boundary conditions ; disordered systems ; Gradient fields ; gradient Gibbs measures ; Infinity ; lower bound on fluctuations ; Mathematical lattices ; Mathematical vectors ; Mathematics ; Nonexistence ; Random interfaces ; Random walk ; slow correlation decay ; Statistical mechanics ; Vector fields</subject><ispartof>The Annals of applied probability, 2008-02, Vol.18 (1), p.109-119</ispartof><rights>Copyright 2008 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</citedby><cites>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25442748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25442748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>van Enter, Aernout C. D.</creatorcontrib><creatorcontrib>Külske, Christof</creatorcontrib><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><title>The Annals of applied probability</title><description>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</description><subject>60K57</subject><subject>82B24</subject><subject>82B44</subject><subject>Boundary conditions</subject><subject>disordered systems</subject><subject>Gradient fields</subject><subject>gradient Gibbs measures</subject><subject>Infinity</subject><subject>lower bound on fluctuations</subject><subject>Mathematical lattices</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nonexistence</subject><subject>Random interfaces</subject><subject>Random walk</subject><subject>slow correlation decay</subject><subject>Statistical mechanics</subject><subject>Vector fields</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWKsLP0DI1sVokkkmk4WLYdBaaFXEuh0yyQuktElJpqB_b3WKqwvvnXsWF6FrSu4oo_yeyKJp3jivTtCE0aoualnKUzShRJBC0Iqfo4uc14QQxZWcoM-XGODL5wGCARwdftfBxi2eJW09hAHPfN9nvASd9wky9gG3MQw-7OM-43kYIDl9aC6jhc3f2-IHzC7RmdObDFfHnKLV0-NH-1wsXmfztlkUpuR8KEriuDQChBbKGEqcq7kBxhTtK6iV06w0FbVCaWENc7VwVhhlFRjXO85EOUXN6N2luAYzwN5svO12yW91-u6i9l27Whyvx9BR7zpKlaoVIVQeHLejw6SYcwL3X6ek-x21I7IbRz2wNyO7zkNM_yATnDPJ6_IHlt90Rw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>van Enter, Aernout C. D.</creator><creator>Külske, Christof</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080201</creationdate><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><author>van Enter, Aernout C. D. ; Külske, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60K57</topic><topic>82B24</topic><topic>82B44</topic><topic>Boundary conditions</topic><topic>disordered systems</topic><topic>Gradient fields</topic><topic>gradient Gibbs measures</topic><topic>Infinity</topic><topic>lower bound on fluctuations</topic><topic>Mathematical lattices</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nonexistence</topic><topic>Random interfaces</topic><topic>Random walk</topic><topic>slow correlation decay</topic><topic>Statistical mechanics</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Enter, Aernout C. D.</creatorcontrib><creatorcontrib>Külske, Christof</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Enter, Aernout C. D.</au><au>Külske, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</atitle><jtitle>The Annals of applied probability</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>18</volume><issue>1</issue><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/07-AAP446</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2008-02, Vol.18 (1), p.109-119
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1199890017
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 60K57
82B24
82B44
Boundary conditions
disordered systems
Gradient fields
gradient Gibbs measures
Infinity
lower bound on fluctuations
Mathematical lattices
Mathematical vectors
Mathematics
Nonexistence
Random interfaces
Random walk
slow correlation decay
Statistical mechanics
Vector fields
title Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonexistence%20of%20Random%20Gradient%20Gibbs%20Measures%20in%20Continuous%20Interface%20Models%20in%20d%20=%202&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=van%20Enter,%20Aernout%20C.%20D.&rft.date=2008-02-01&rft.volume=18&rft.issue=1&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/07-AAP446&rft_dat=%3Cjstor_proje%3E25442748%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25442748&rfr_iscdi=true