Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2
We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are &quo...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2008-02, Vol.18 (1), p.109-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | The Annals of applied probability |
container_volume | 18 |
creator | van Enter, Aernout C. D. Külske, Christof |
description | We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment. |
doi_str_mv | 10.1214/07-AAP446 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1199890017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25442748</jstor_id><sourcerecordid>25442748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKsLP0DI1sVokkkmk4WLYdBaaFXEuh0yyQuktElJpqB_b3WKqwvvnXsWF6FrSu4oo_yeyKJp3jivTtCE0aoualnKUzShRJBC0Iqfo4uc14QQxZWcoM-XGODL5wGCARwdftfBxi2eJW09hAHPfN9nvASd9wky9gG3MQw-7OM-43kYIDl9aC6jhc3f2-IHzC7RmdObDFfHnKLV0-NH-1wsXmfztlkUpuR8KEriuDQChBbKGEqcq7kBxhTtK6iV06w0FbVCaWENc7VwVhhlFRjXO85EOUXN6N2luAYzwN5svO12yW91-u6i9l27Whyvx9BR7zpKlaoVIVQeHLejw6SYcwL3X6ek-x21I7IbRz2wNyO7zkNM_yATnDPJ6_IHlt90Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>van Enter, Aernout C. D. ; Külske, Christof</creator><creatorcontrib>van Enter, Aernout C. D. ; Külske, Christof</creatorcontrib><description>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/07-AAP446</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60K57 ; 82B24 ; 82B44 ; Boundary conditions ; disordered systems ; Gradient fields ; gradient Gibbs measures ; Infinity ; lower bound on fluctuations ; Mathematical lattices ; Mathematical vectors ; Mathematics ; Nonexistence ; Random interfaces ; Random walk ; slow correlation decay ; Statistical mechanics ; Vector fields</subject><ispartof>The Annals of applied probability, 2008-02, Vol.18 (1), p.109-119</ispartof><rights>Copyright 2008 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</citedby><cites>FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25442748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25442748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>van Enter, Aernout C. D.</creatorcontrib><creatorcontrib>Külske, Christof</creatorcontrib><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><title>The Annals of applied probability</title><description>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</description><subject>60K57</subject><subject>82B24</subject><subject>82B44</subject><subject>Boundary conditions</subject><subject>disordered systems</subject><subject>Gradient fields</subject><subject>gradient Gibbs measures</subject><subject>Infinity</subject><subject>lower bound on fluctuations</subject><subject>Mathematical lattices</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nonexistence</subject><subject>Random interfaces</subject><subject>Random walk</subject><subject>slow correlation decay</subject><subject>Statistical mechanics</subject><subject>Vector fields</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWKsLP0DI1sVokkkmk4WLYdBaaFXEuh0yyQuktElJpqB_b3WKqwvvnXsWF6FrSu4oo_yeyKJp3jivTtCE0aoualnKUzShRJBC0Iqfo4uc14QQxZWcoM-XGODL5wGCARwdftfBxi2eJW09hAHPfN9nvASd9wky9gG3MQw-7OM-43kYIDl9aC6jhc3f2-IHzC7RmdObDFfHnKLV0-NH-1wsXmfztlkUpuR8KEriuDQChBbKGEqcq7kBxhTtK6iV06w0FbVCaWENc7VwVhhlFRjXO85EOUXN6N2luAYzwN5svO12yW91-u6i9l27Whyvx9BR7zpKlaoVIVQeHLejw6SYcwL3X6ek-x21I7IbRz2wNyO7zkNM_yATnDPJ6_IHlt90Rw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>van Enter, Aernout C. D.</creator><creator>Külske, Christof</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080201</creationdate><title>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</title><author>van Enter, Aernout C. D. ; Külske, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-30f47c5e5a59cc10ff84ce2291b6e89fa23c61d59a5dc2f85fd5c9d9ecfbf4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60K57</topic><topic>82B24</topic><topic>82B44</topic><topic>Boundary conditions</topic><topic>disordered systems</topic><topic>Gradient fields</topic><topic>gradient Gibbs measures</topic><topic>Infinity</topic><topic>lower bound on fluctuations</topic><topic>Mathematical lattices</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nonexistence</topic><topic>Random interfaces</topic><topic>Random walk</topic><topic>slow correlation decay</topic><topic>Statistical mechanics</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Enter, Aernout C. D.</creatorcontrib><creatorcontrib>Külske, Christof</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Enter, Aernout C. D.</au><au>Külske, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2</atitle><jtitle>The Annals of applied probability</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>18</volume><issue>1</issue><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d = 2, while there are "gradient Gibbs measures" describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d = 2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d = 3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/07-AAP446</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2008-02, Vol.18 (1), p.109-119 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1199890017 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 60K57 82B24 82B44 Boundary conditions disordered systems Gradient fields gradient Gibbs measures Infinity lower bound on fluctuations Mathematical lattices Mathematical vectors Mathematics Nonexistence Random interfaces Random walk slow correlation decay Statistical mechanics Vector fields |
title | Nonexistence of Random Gradient Gibbs Measures in Continuous Interface Models in d = 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonexistence%20of%20Random%20Gradient%20Gibbs%20Measures%20in%20Continuous%20Interface%20Models%20in%20d%20=%202&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=van%20Enter,%20Aernout%20C.%20D.&rft.date=2008-02-01&rft.volume=18&rft.issue=1&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/07-AAP446&rft_dat=%3Cjstor_proje%3E25442748%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25442748&rfr_iscdi=true |