Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming
A class of stochastic control problems where the payoff depends on the running maximum of a diffusion process is described. The controller must make two kinds of decision: first, he must choose a work rate (this decision determines the rate of profit as well as the proximity of failure), and second,...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 1993-05, Vol.3 (2), p.364-379 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 2 |
container_start_page | 364 |
container_title | The Annals of applied probability |
container_volume | 3 |
creator | Heinricher, Arthur C. Stockbridge, Richard H. |
description | A class of stochastic control problems where the payoff depends on the running maximum of a diffusion process is described. The controller must make two kinds of decision: first, he must choose a work rate (this decision determines the rate of profit as well as the proximity of failure), and second, he must decide when to replace a deteriorated system with a new one. Preventive replacement is a realistic option if the cost for replacement after failure is larger than the cost of a preventive replacement. We focus on the profit and replacement cost for a single work cycle and solve the problem in two stages. First, the optimal feedback control (work rate) is determined by maximizing the payoff during a single excursion of a controlled diffusion away from the running maximum. This step involves the solution of the Hamilton-Jacobi-Bellman (HJB) partial differential equation. The second step is to determine the optimal replacement set. The assumption that failure occurs only on the set where the state is increasing implies that replacement is optimal only on this set. This leads to a simple formula for the optimal replacement level in terms of the value function. |
doi_str_mv | 10.1214/aoap/1177005429 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177005429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959637</jstor_id><sourcerecordid>2959637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2069-2a04c84ca01c7740c0836b552b012591646404b9d0898e5ecfa7c3e14701b2cd3</originalsourceid><addsrcrecordid>eNptkMFLwzAYxYMoOKdnLx7yD9R-SZOm8TY6p8JgMp3XkqbZzGibkmbI_ns7NubF04PH93u87yF0T-CRUMJi5VQXEyIEAGdUXqARJWkWZSIRl2hEgEPEScqu0U3fbwFAMilG6GvRBduoGueuDd7VWLUVXpquVto0pg34x4Zv_BFUMNHUdKatDuZM2XrnDV4O9hOe7lvVWI3fvdt41TS23dyiq7Wqe3N30jFazZ4_89dovnh5yyfzSFNIZUQVMJ0xrYBoIRhoyJK05JyWQCiXQ92UAStlBZnMDDd6rYRODGECSEl1lYzR5Jjbebc1Opidrm1VdH74ye8Lp2yRr-Yn9ySHoYq_oYaM-Jihvet7b9ZnnEBxmPYf4uFIbPvg_PmcSi7TRCS_MEd2nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Heinricher, Arthur C. ; Stockbridge, Richard H.</creator><creatorcontrib>Heinricher, Arthur C. ; Stockbridge, Richard H.</creatorcontrib><description>A class of stochastic control problems where the payoff depends on the running maximum of a diffusion process is described. The controller must make two kinds of decision: first, he must choose a work rate (this decision determines the rate of profit as well as the proximity of failure), and second, he must decide when to replace a deteriorated system with a new one. Preventive replacement is a realistic option if the cost for replacement after failure is larger than the cost of a preventive replacement. We focus on the profit and replacement cost for a single work cycle and solve the problem in two stages. First, the optimal feedback control (work rate) is determined by maximizing the payoff during a single excursion of a controlled diffusion away from the running maximum. This step involves the solution of the Hamilton-Jacobi-Bellman (HJB) partial differential equation. The second step is to determine the optimal replacement set. The assumption that failure occurs only on the set where the state is increasing implies that replacement is optimal only on this set. This leads to a simple formula for the optimal replacement level in terms of the value function.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/aoap/1177005429</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>49B60 ; 49C20 ; 93E20 ; Boundary conditions ; Control theory ; Controlled diffusion ; Dynamic programming ; Feedback control ; Integrands ; Markov processes ; Optimal control ; optimal replacement ; Polynomials ; Replacement value ; running maximum ; state dependent failure ; Stochastic models ; stochastic wear models</subject><ispartof>The Annals of applied probability, 1993-05, Vol.3 (2), p.364-379</ispartof><rights>Copyright 1993 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2069-2a04c84ca01c7740c0836b552b012591646404b9d0898e5ecfa7c3e14701b2cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959637$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959637$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Heinricher, Arthur C.</creatorcontrib><creatorcontrib>Stockbridge, Richard H.</creatorcontrib><title>Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming</title><title>The Annals of applied probability</title><description>A class of stochastic control problems where the payoff depends on the running maximum of a diffusion process is described. The controller must make two kinds of decision: first, he must choose a work rate (this decision determines the rate of profit as well as the proximity of failure), and second, he must decide when to replace a deteriorated system with a new one. Preventive replacement is a realistic option if the cost for replacement after failure is larger than the cost of a preventive replacement. We focus on the profit and replacement cost for a single work cycle and solve the problem in two stages. First, the optimal feedback control (work rate) is determined by maximizing the payoff during a single excursion of a controlled diffusion away from the running maximum. This step involves the solution of the Hamilton-Jacobi-Bellman (HJB) partial differential equation. The second step is to determine the optimal replacement set. The assumption that failure occurs only on the set where the state is increasing implies that replacement is optimal only on this set. This leads to a simple formula for the optimal replacement level in terms of the value function.</description><subject>49B60</subject><subject>49C20</subject><subject>93E20</subject><subject>Boundary conditions</subject><subject>Control theory</subject><subject>Controlled diffusion</subject><subject>Dynamic programming</subject><subject>Feedback control</subject><subject>Integrands</subject><subject>Markov processes</subject><subject>Optimal control</subject><subject>optimal replacement</subject><subject>Polynomials</subject><subject>Replacement value</subject><subject>running maximum</subject><subject>state dependent failure</subject><subject>Stochastic models</subject><subject>stochastic wear models</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAYxYMoOKdnLx7yD9R-SZOm8TY6p8JgMp3XkqbZzGibkmbI_ns7NubF04PH93u87yF0T-CRUMJi5VQXEyIEAGdUXqARJWkWZSIRl2hEgEPEScqu0U3fbwFAMilG6GvRBduoGueuDd7VWLUVXpquVto0pg34x4Zv_BFUMNHUdKatDuZM2XrnDV4O9hOe7lvVWI3fvdt41TS23dyiq7Wqe3N30jFazZ4_89dovnh5yyfzSFNIZUQVMJ0xrYBoIRhoyJK05JyWQCiXQ92UAStlBZnMDDd6rYRODGECSEl1lYzR5Jjbebc1Opidrm1VdH74ye8Lp2yRr-Yn9ySHoYq_oYaM-Jihvet7b9ZnnEBxmPYf4uFIbPvg_PmcSi7TRCS_MEd2nQ</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Heinricher, Arthur C.</creator><creator>Stockbridge, Richard H.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930501</creationdate><title>Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming</title><author>Heinricher, Arthur C. ; Stockbridge, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2069-2a04c84ca01c7740c0836b552b012591646404b9d0898e5ecfa7c3e14701b2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>49B60</topic><topic>49C20</topic><topic>93E20</topic><topic>Boundary conditions</topic><topic>Control theory</topic><topic>Controlled diffusion</topic><topic>Dynamic programming</topic><topic>Feedback control</topic><topic>Integrands</topic><topic>Markov processes</topic><topic>Optimal control</topic><topic>optimal replacement</topic><topic>Polynomials</topic><topic>Replacement value</topic><topic>running maximum</topic><topic>state dependent failure</topic><topic>Stochastic models</topic><topic>stochastic wear models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinricher, Arthur C.</creatorcontrib><creatorcontrib>Stockbridge, Richard H.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinricher, Arthur C.</au><au>Stockbridge, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming</atitle><jtitle>The Annals of applied probability</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>3</volume><issue>2</issue><spage>364</spage><epage>379</epage><pages>364-379</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>A class of stochastic control problems where the payoff depends on the running maximum of a diffusion process is described. The controller must make two kinds of decision: first, he must choose a work rate (this decision determines the rate of profit as well as the proximity of failure), and second, he must decide when to replace a deteriorated system with a new one. Preventive replacement is a realistic option if the cost for replacement after failure is larger than the cost of a preventive replacement. We focus on the profit and replacement cost for a single work cycle and solve the problem in two stages. First, the optimal feedback control (work rate) is determined by maximizing the payoff during a single excursion of a controlled diffusion away from the running maximum. This step involves the solution of the Hamilton-Jacobi-Bellman (HJB) partial differential equation. The second step is to determine the optimal replacement set. The assumption that failure occurs only on the set where the state is increasing implies that replacement is optimal only on this set. This leads to a simple formula for the optimal replacement level in terms of the value function.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoap/1177005429</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 1993-05, Vol.3 (2), p.364-379 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177005429 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 49B60 49C20 93E20 Boundary conditions Control theory Controlled diffusion Dynamic programming Feedback control Integrands Markov processes Optimal control optimal replacement Polynomials Replacement value running maximum state dependent failure Stochastic models stochastic wear models |
title | Optimal Control and Replacement with State-Dependent Failure Rate: Dynamic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Control%20and%20Replacement%20with%20State-Dependent%20Failure%20Rate:%20Dynamic%20Programming&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Heinricher,%20Arthur%20C.&rft.date=1993-05-01&rft.volume=3&rft.issue=2&rft.spage=364&rft.epage=379&rft.pages=364-379&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/aoap/1177005429&rft_dat=%3Cjstor_proje%3E2959637%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959637&rfr_iscdi=true |