Transience of Multiclass Queueing Networks Via Fluid Limit Models
This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faste...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 1995-11, Vol.5 (4), p.946-957 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 957 |
---|---|
container_issue | 4 |
container_start_page | 946 |
container_title | The Annals of applied probability |
container_volume | 5 |
creator | Meyn, Sean P. |
description | This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power. |
doi_str_mv | 10.1214/aoap/1177004601 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177004601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2245100</jstor_id><sourcerecordid>2245100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOKdnLx7yD9S-1yRNexzDqdApwua1vKWpZHbLSFrE_17Hxrx4-sHjfd_hY-wW4R4zlCl52qWIWgPIHPCMjTLMi6TQQp-zEYKCRGEuL9lVjGsAKGWpR2yyCLSNzm6N5b7l86HrnekoRv422MG67Qd_sf2XD5-Rvzvis25wDa_cxvV87hvbxWt20VIX7c1xx2w5e1hMn5Lq9fF5OqkSI5TuE01li6QaBSuQbd5IRSUKsIpytJkqSYEEs7IaSkMyF9iatiCJuhQiy7AQYzY5eHfBr63p7WA619S74DYUvmtPrp4uq-P1OPsm9V-TX0d6cJjgYwy2PeEI9b7iP8TdgVjH3ofTe5ZJhQDiB5tcbxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Meyn, Sean P.</creator><creatorcontrib>Meyn, Sean P.</creatorcontrib><description>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/aoap/1177004601</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60K20 ; 60K25 ; 90B25 ; 90B35 ; Approximation ; Automats ; Differential equations ; Ergodic theory ; Markov chains ; Mathematical vectors ; Network servers ; Queueing networks ; Random variables ; Scheduling ; stability</subject><ispartof>The Annals of applied probability, 1995-11, Vol.5 (4), p.946-957</ispartof><rights>Copyright 1995 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2245100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2245100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Meyn, Sean P.</creatorcontrib><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><title>The Annals of applied probability</title><description>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</description><subject>60K20</subject><subject>60K25</subject><subject>90B25</subject><subject>90B35</subject><subject>Approximation</subject><subject>Automats</subject><subject>Differential equations</subject><subject>Ergodic theory</subject><subject>Markov chains</subject><subject>Mathematical vectors</subject><subject>Network servers</subject><subject>Queueing networks</subject><subject>Random variables</subject><subject>Scheduling</subject><subject>stability</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOKdnLx7yD9S-1yRNexzDqdApwua1vKWpZHbLSFrE_17Hxrx4-sHjfd_hY-wW4R4zlCl52qWIWgPIHPCMjTLMi6TQQp-zEYKCRGEuL9lVjGsAKGWpR2yyCLSNzm6N5b7l86HrnekoRv422MG67Qd_sf2XD5-Rvzvis25wDa_cxvV87hvbxWt20VIX7c1xx2w5e1hMn5Lq9fF5OqkSI5TuE01li6QaBSuQbd5IRSUKsIpytJkqSYEEs7IaSkMyF9iatiCJuhQiy7AQYzY5eHfBr63p7WA619S74DYUvmtPrp4uq-P1OPsm9V-TX0d6cJjgYwy2PeEI9b7iP8TdgVjH3ofTe5ZJhQDiB5tcbxQ</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Meyn, Sean P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19951101</creationdate><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><author>Meyn, Sean P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>60K20</topic><topic>60K25</topic><topic>90B25</topic><topic>90B35</topic><topic>Approximation</topic><topic>Automats</topic><topic>Differential equations</topic><topic>Ergodic theory</topic><topic>Markov chains</topic><topic>Mathematical vectors</topic><topic>Network servers</topic><topic>Queueing networks</topic><topic>Random variables</topic><topic>Scheduling</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyn, Sean P.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyn, Sean P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transience of Multiclass Queueing Networks Via Fluid Limit Models</atitle><jtitle>The Annals of applied probability</jtitle><date>1995-11-01</date><risdate>1995</risdate><volume>5</volume><issue>4</issue><spage>946</spage><epage>957</epage><pages>946-957</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoap/1177004601</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 1995-11, Vol.5 (4), p.946-957 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177004601 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 60K20 60K25 90B25 90B35 Approximation Automats Differential equations Ergodic theory Markov chains Mathematical vectors Network servers Queueing networks Random variables Scheduling stability |
title | Transience of Multiclass Queueing Networks Via Fluid Limit Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transience%20of%20Multiclass%20Queueing%20Networks%20Via%20Fluid%20Limit%20Models&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Meyn,%20Sean%20P.&rft.date=1995-11-01&rft.volume=5&rft.issue=4&rft.spage=946&rft.epage=957&rft.pages=946-957&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/aoap/1177004601&rft_dat=%3Cjstor_proje%3E2245100%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2245100&rfr_iscdi=true |