Transience of Multiclass Queueing Networks Via Fluid Limit Models

This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 1995-11, Vol.5 (4), p.946-957
1. Verfasser: Meyn, Sean P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 957
container_issue 4
container_start_page 946
container_title The Annals of applied probability
container_volume 5
creator Meyn, Sean P.
description This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.
doi_str_mv 10.1214/aoap/1177004601
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177004601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2245100</jstor_id><sourcerecordid>2245100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOKdnLx7yD9S-1yRNexzDqdApwua1vKWpZHbLSFrE_17Hxrx4-sHjfd_hY-wW4R4zlCl52qWIWgPIHPCMjTLMi6TQQp-zEYKCRGEuL9lVjGsAKGWpR2yyCLSNzm6N5b7l86HrnekoRv422MG67Qd_sf2XD5-Rvzvis25wDa_cxvV87hvbxWt20VIX7c1xx2w5e1hMn5Lq9fF5OqkSI5TuE01li6QaBSuQbd5IRSUKsIpytJkqSYEEs7IaSkMyF9iatiCJuhQiy7AQYzY5eHfBr63p7WA619S74DYUvmtPrp4uq-P1OPsm9V-TX0d6cJjgYwy2PeEI9b7iP8TdgVjH3ofTe5ZJhQDiB5tcbxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Meyn, Sean P.</creator><creatorcontrib>Meyn, Sean P.</creatorcontrib><description>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/aoap/1177004601</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60K20 ; 60K25 ; 90B25 ; 90B35 ; Approximation ; Automats ; Differential equations ; Ergodic theory ; Markov chains ; Mathematical vectors ; Network servers ; Queueing networks ; Random variables ; Scheduling ; stability</subject><ispartof>The Annals of applied probability, 1995-11, Vol.5 (4), p.946-957</ispartof><rights>Copyright 1995 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2245100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2245100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Meyn, Sean P.</creatorcontrib><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><title>The Annals of applied probability</title><description>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</description><subject>60K20</subject><subject>60K25</subject><subject>90B25</subject><subject>90B35</subject><subject>Approximation</subject><subject>Automats</subject><subject>Differential equations</subject><subject>Ergodic theory</subject><subject>Markov chains</subject><subject>Mathematical vectors</subject><subject>Network servers</subject><subject>Queueing networks</subject><subject>Random variables</subject><subject>Scheduling</subject><subject>stability</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOKdnLx7yD9S-1yRNexzDqdApwua1vKWpZHbLSFrE_17Hxrx4-sHjfd_hY-wW4R4zlCl52qWIWgPIHPCMjTLMi6TQQp-zEYKCRGEuL9lVjGsAKGWpR2yyCLSNzm6N5b7l86HrnekoRv422MG67Qd_sf2XD5-Rvzvis25wDa_cxvV87hvbxWt20VIX7c1xx2w5e1hMn5Lq9fF5OqkSI5TuE01li6QaBSuQbd5IRSUKsIpytJkqSYEEs7IaSkMyF9iatiCJuhQiy7AQYzY5eHfBr63p7WA619S74DYUvmtPrp4uq-P1OPsm9V-TX0d6cJjgYwy2PeEI9b7iP8TdgVjH3ofTe5ZJhQDiB5tcbxQ</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Meyn, Sean P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19951101</creationdate><title>Transience of Multiclass Queueing Networks Via Fluid Limit Models</title><author>Meyn, Sean P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7a9f1a5d50b04f6d45a9130e5a61e259a5040cbe709ca4631fcf8a41793322183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>60K20</topic><topic>60K25</topic><topic>90B25</topic><topic>90B35</topic><topic>Approximation</topic><topic>Automats</topic><topic>Differential equations</topic><topic>Ergodic theory</topic><topic>Markov chains</topic><topic>Mathematical vectors</topic><topic>Network servers</topic><topic>Queueing networks</topic><topic>Random variables</topic><topic>Scheduling</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyn, Sean P.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyn, Sean P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transience of Multiclass Queueing Networks Via Fluid Limit Models</atitle><jtitle>The Annals of applied probability</jtitle><date>1995-11-01</date><risdate>1995</risdate><volume>5</volume><issue>4</issue><spage>946</spage><epage>957</epage><pages>946-957</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>This paper treats transience for queueing network models by considering an associated fluid limit model. If starting from any initial condition the fluid limit model explodes at a linear rate, then the associated queueing network with i.i.d. service times and a renewal arrival process explodes faster than any fractional power.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoap/1177004601</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 1995-11, Vol.5 (4), p.946-957
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1177004601
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60K20
60K25
90B25
90B35
Approximation
Automats
Differential equations
Ergodic theory
Markov chains
Mathematical vectors
Network servers
Queueing networks
Random variables
Scheduling
stability
title Transience of Multiclass Queueing Networks Via Fluid Limit Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transience%20of%20Multiclass%20Queueing%20Networks%20Via%20Fluid%20Limit%20Models&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Meyn,%20Sean%20P.&rft.date=1995-11-01&rft.volume=5&rft.issue=4&rft.spage=946&rft.epage=957&rft.pages=946-957&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/aoap/1177004601&rft_dat=%3Cjstor_proje%3E2245100%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2245100&rfr_iscdi=true