Subgeometric Ergodicity of Strong Markov Processes

We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2005-05, Vol.15 (2), p.1565-1589
Hauptverfasser: Fort, G., Roberts, G. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 2
container_start_page 1565
container_title The Annals of applied probability
container_volume 15
creator Fort, G.
Roberts, G. O.
description We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.
doi_str_mv 10.1214/105051605000000115
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1115137986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30038365</jstor_id><sourcerecordid>30038365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</originalsourceid><addsrcrecordid>eNplkN1Kw0AQhRdRMFZfQBDyAtGd_c9lKdUKEYXa67DZ3ZTU1i27qdC3d2tCb5yBOTCc78AMQveAH4EAewLMMQeR5l8B8AuUERCqUJLKS5SdDEVysGt0E-MmeUpWygyR5aFZO79zfehMPg9rbzvT9cfct_myD_57nb_p8OV_8o_gjYvRxVt01eptdHejTtDqef45WxTV-8vrbFoVhkroC2Z4gzVxIBtrHTTKcUUaS61gRCog3DDNeWlEi6nhBCQRLHWrJHDbtI5O0HTI3Qe_caZ3B7PtbL0P3U6HY-11V89W1bgdRXu9ryGdD1SWSqQMMmSY4GMMrj3jgOvT5-r_n0vQwwBtYu_DmaAYU0UFp7_93mn5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subgeometric Ergodicity of Strong Markov Processes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Fort, G. ; Roberts, G. O.</creator><creatorcontrib>Fort, G. ; Roberts, G. O.</creatorcontrib><description>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/105051605000000115</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60J25 ; 60J60 ; 60K30 ; Density ; drift criterion ; Ergodic theory ; Langevin diffusions ; Markov chains ; Markov processes ; Mathematical functions ; Mathematical theorems ; Perceptron convergence procedure ; Polynomials ; Semigroups ; Skeleton ; storage models ; subgeometric f-ergodicity</subject><ispartof>The Annals of applied probability, 2005-05, Vol.15 (2), p.1565-1589</ispartof><rights>Copyright 2005 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</citedby><cites>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30038365$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30038365$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,924,27911,27912,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>Fort, G.</creatorcontrib><creatorcontrib>Roberts, G. O.</creatorcontrib><title>Subgeometric Ergodicity of Strong Markov Processes</title><title>The Annals of applied probability</title><description>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</description><subject>60J25</subject><subject>60J60</subject><subject>60K30</subject><subject>Density</subject><subject>drift criterion</subject><subject>Ergodic theory</subject><subject>Langevin diffusions</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Polynomials</subject><subject>Semigroups</subject><subject>Skeleton</subject><subject>storage models</subject><subject>subgeometric f-ergodicity</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplkN1Kw0AQhRdRMFZfQBDyAtGd_c9lKdUKEYXa67DZ3ZTU1i27qdC3d2tCb5yBOTCc78AMQveAH4EAewLMMQeR5l8B8AuUERCqUJLKS5SdDEVysGt0E-MmeUpWygyR5aFZO79zfehMPg9rbzvT9cfct_myD_57nb_p8OV_8o_gjYvRxVt01eptdHejTtDqef45WxTV-8vrbFoVhkroC2Z4gzVxIBtrHTTKcUUaS61gRCog3DDNeWlEi6nhBCQRLHWrJHDbtI5O0HTI3Qe_caZ3B7PtbL0P3U6HY-11V89W1bgdRXu9ryGdD1SWSqQMMmSY4GMMrj3jgOvT5-r_n0vQwwBtYu_DmaAYU0UFp7_93mn5</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Fort, G.</creator><creator>Roberts, G. O.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050501</creationdate><title>Subgeometric Ergodicity of Strong Markov Processes</title><author>Fort, G. ; Roberts, G. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>60J25</topic><topic>60J60</topic><topic>60K30</topic><topic>Density</topic><topic>drift criterion</topic><topic>Ergodic theory</topic><topic>Langevin diffusions</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Polynomials</topic><topic>Semigroups</topic><topic>Skeleton</topic><topic>storage models</topic><topic>subgeometric f-ergodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fort, G.</creatorcontrib><creatorcontrib>Roberts, G. O.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fort, G.</au><au>Roberts, G. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgeometric Ergodicity of Strong Markov Processes</atitle><jtitle>The Annals of applied probability</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>15</volume><issue>2</issue><spage>1565</spage><epage>1589</epage><pages>1565-1589</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/105051605000000115</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2005-05, Vol.15 (2), p.1565-1589
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1115137986
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects 60J25
60J60
60K30
Density
drift criterion
Ergodic theory
Langevin diffusions
Markov chains
Markov processes
Mathematical functions
Mathematical theorems
Perceptron convergence procedure
Polynomials
Semigroups
Skeleton
storage models
subgeometric f-ergodicity
title Subgeometric Ergodicity of Strong Markov Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgeometric%20Ergodicity%20of%20Strong%20Markov%20Processes&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Fort,%20G.&rft.date=2005-05-01&rft.volume=15&rft.issue=2&rft.spage=1565&rft.epage=1589&rft.pages=1565-1589&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/105051605000000115&rft_dat=%3Cjstor_proje%3E30038365%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30038365&rfr_iscdi=true