Subgeometric Ergodicity of Strong Markov Processes
We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator....
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2005-05, Vol.15 (2), p.1565-1589 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1589 |
---|---|
container_issue | 2 |
container_start_page | 1565 |
container_title | The Annals of applied probability |
container_volume | 15 |
creator | Fort, G. Roberts, G. O. |
description | We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models. |
doi_str_mv | 10.1214/105051605000000115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1115137986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30038365</jstor_id><sourcerecordid>30038365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</originalsourceid><addsrcrecordid>eNplkN1Kw0AQhRdRMFZfQBDyAtGd_c9lKdUKEYXa67DZ3ZTU1i27qdC3d2tCb5yBOTCc78AMQveAH4EAewLMMQeR5l8B8AuUERCqUJLKS5SdDEVysGt0E-MmeUpWygyR5aFZO79zfehMPg9rbzvT9cfct_myD_57nb_p8OV_8o_gjYvRxVt01eptdHejTtDqef45WxTV-8vrbFoVhkroC2Z4gzVxIBtrHTTKcUUaS61gRCog3DDNeWlEi6nhBCQRLHWrJHDbtI5O0HTI3Qe_caZ3B7PtbL0P3U6HY-11V89W1bgdRXu9ryGdD1SWSqQMMmSY4GMMrj3jgOvT5-r_n0vQwwBtYu_DmaAYU0UFp7_93mn5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subgeometric Ergodicity of Strong Markov Processes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Fort, G. ; Roberts, G. O.</creator><creatorcontrib>Fort, G. ; Roberts, G. O.</creatorcontrib><description>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/105051605000000115</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60J25 ; 60J60 ; 60K30 ; Density ; drift criterion ; Ergodic theory ; Langevin diffusions ; Markov chains ; Markov processes ; Mathematical functions ; Mathematical theorems ; Perceptron convergence procedure ; Polynomials ; Semigroups ; Skeleton ; storage models ; subgeometric f-ergodicity</subject><ispartof>The Annals of applied probability, 2005-05, Vol.15 (2), p.1565-1589</ispartof><rights>Copyright 2005 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</citedby><cites>FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30038365$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30038365$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,924,27911,27912,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>Fort, G.</creatorcontrib><creatorcontrib>Roberts, G. O.</creatorcontrib><title>Subgeometric Ergodicity of Strong Markov Processes</title><title>The Annals of applied probability</title><description>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</description><subject>60J25</subject><subject>60J60</subject><subject>60K30</subject><subject>Density</subject><subject>drift criterion</subject><subject>Ergodic theory</subject><subject>Langevin diffusions</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Polynomials</subject><subject>Semigroups</subject><subject>Skeleton</subject><subject>storage models</subject><subject>subgeometric f-ergodicity</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplkN1Kw0AQhRdRMFZfQBDyAtGd_c9lKdUKEYXa67DZ3ZTU1i27qdC3d2tCb5yBOTCc78AMQveAH4EAewLMMQeR5l8B8AuUERCqUJLKS5SdDEVysGt0E-MmeUpWygyR5aFZO79zfehMPg9rbzvT9cfct_myD_57nb_p8OV_8o_gjYvRxVt01eptdHejTtDqef45WxTV-8vrbFoVhkroC2Z4gzVxIBtrHTTKcUUaS61gRCog3DDNeWlEi6nhBCQRLHWrJHDbtI5O0HTI3Qe_caZ3B7PtbL0P3U6HY-11V89W1bgdRXu9ryGdD1SWSqQMMmSY4GMMrj3jgOvT5-r_n0vQwwBtYu_DmaAYU0UFp7_93mn5</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Fort, G.</creator><creator>Roberts, G. O.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050501</creationdate><title>Subgeometric Ergodicity of Strong Markov Processes</title><author>Fort, G. ; Roberts, G. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4c5b0a2e17bdde1b8e582bd3d64278125c4a559c6f03c5217264646f8715dbfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>60J25</topic><topic>60J60</topic><topic>60K30</topic><topic>Density</topic><topic>drift criterion</topic><topic>Ergodic theory</topic><topic>Langevin diffusions</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Polynomials</topic><topic>Semigroups</topic><topic>Skeleton</topic><topic>storage models</topic><topic>subgeometric f-ergodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fort, G.</creatorcontrib><creatorcontrib>Roberts, G. O.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fort, G.</au><au>Roberts, G. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgeometric Ergodicity of Strong Markov Processes</atitle><jtitle>The Annals of applied probability</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>15</volume><issue>2</issue><spage>1565</spage><epage>1589</epage><pages>1565-1589</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We derive sufficient conditions for subgeometric ƒ-ergodicity of strongly Markovian processes. We first propose a criterion based on modulated moment of some delayed return-time to a petite set. We then formulate a criterion for polynomial ƒ-ergodicity in terms of a drift condition on the generator. Applications to specific processes are considered, including Langevin tempered diffusions on $R^{n}$ and storage models.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/105051605000000115</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2005-05, Vol.15 (2), p.1565-1589 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1115137986 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
subjects | 60J25 60J60 60K30 Density drift criterion Ergodic theory Langevin diffusions Markov chains Markov processes Mathematical functions Mathematical theorems Perceptron convergence procedure Polynomials Semigroups Skeleton storage models subgeometric f-ergodicity |
title | Subgeometric Ergodicity of Strong Markov Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgeometric%20Ergodicity%20of%20Strong%20Markov%20Processes&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Fort,%20G.&rft.date=2005-05-01&rft.volume=15&rft.issue=2&rft.spage=1565&rft.epage=1589&rft.pages=1565-1589&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/105051605000000115&rft_dat=%3Cjstor_proje%3E30038365%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30038365&rfr_iscdi=true |