Tail Index Estimation for Dependent Data
A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be a...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 1998-11, Vol.8 (4), p.1156-1183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1183 |
---|---|
container_issue | 4 |
container_start_page | 1156 |
container_title | The Annals of applied probability |
container_volume | 8 |
creator | Resnick, Sidney Stărică, Catalin |
description | A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty < t < \infty$ where $\{(A_n, Z_n), - \infty < n < \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models. |
doi_str_mv | 10.1214/aoap/1028903376 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1028903376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2667176</jstor_id><sourcerecordid>2667176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</originalsourceid><addsrcrecordid>eNptkDtLxEAUhQdRMK7WNhYpbWLmmZmUS3bVhYDNbh0m84CEmAkzI-i_N0vC2lh9cO49h3suAI8IviCMaC6dnHIEsSghIby4AglGhcgEJ_waJAgymDFU0FtwF0IPISxpyRPwfJTdkB5Gbb7TfYjdp4ydG1PrfLozk5n1MaY7GeU9uLFyCOZh5QacXvfH6j2rP94O1bbOFEEiZpIoSFXZcoq0MhRD1YpWUUkYs6ViLTaGlVooziEnGlGhbWEtkRrPaJkhG7BdcifveqOi-VJDp5vJz6f5n8bJrqlO9aquOFdv_qrPGfmSobwLwRt7sSPYnJ_1j-NpcfQhOn9Zx0XB0Tz-BS3mZ3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tail Index Estimation for Dependent Data</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Resnick, Sidney ; Stărică, Catalin</creator><creatorcontrib>Resnick, Sidney ; Stărică, Catalin</creatorcontrib><description>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty < t < \infty$ where $\{(A_n, Z_n), - \infty < n < \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/aoap/1028903376</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60G10 ; 60G70 ; ARCH model ; bilinear model ; Coefficients ; Consistent estimators ; Difference equations ; Estimators ; heavy tails ; hidden Markov model ; Hill estimator ; Linear models ; Maximum likelihood estimation ; moving average ; Random variables ; Stochastic models ; tail empirical process ; tail estimator ; Time series models ; Traffic estimation</subject><ispartof>The Annals of applied probability, 1998-11, Vol.8 (4), p.1156-1183</ispartof><rights>Copyright 1998 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</citedby><cites>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2667176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2667176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Catalin</creatorcontrib><title>Tail Index Estimation for Dependent Data</title><title>The Annals of applied probability</title><description>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty < t < \infty$ where $\{(A_n, Z_n), - \infty < n < \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</description><subject>60G10</subject><subject>60G70</subject><subject>ARCH model</subject><subject>bilinear model</subject><subject>Coefficients</subject><subject>Consistent estimators</subject><subject>Difference equations</subject><subject>Estimators</subject><subject>heavy tails</subject><subject>hidden Markov model</subject><subject>Hill estimator</subject><subject>Linear models</subject><subject>Maximum likelihood estimation</subject><subject>moving average</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>tail empirical process</subject><subject>tail estimator</subject><subject>Time series models</subject><subject>Traffic estimation</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkDtLxEAUhQdRMK7WNhYpbWLmmZmUS3bVhYDNbh0m84CEmAkzI-i_N0vC2lh9cO49h3suAI8IviCMaC6dnHIEsSghIby4AglGhcgEJ_waJAgymDFU0FtwF0IPISxpyRPwfJTdkB5Gbb7TfYjdp4ydG1PrfLozk5n1MaY7GeU9uLFyCOZh5QacXvfH6j2rP94O1bbOFEEiZpIoSFXZcoq0MhRD1YpWUUkYs6ViLTaGlVooziEnGlGhbWEtkRrPaJkhG7BdcifveqOi-VJDp5vJz6f5n8bJrqlO9aquOFdv_qrPGfmSobwLwRt7sSPYnJ_1j-NpcfQhOn9Zx0XB0Tz-BS3mZ3g</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Resnick, Sidney</creator><creator>Stărică, Catalin</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981101</creationdate><title>Tail Index Estimation for Dependent Data</title><author>Resnick, Sidney ; Stărică, Catalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>60G10</topic><topic>60G70</topic><topic>ARCH model</topic><topic>bilinear model</topic><topic>Coefficients</topic><topic>Consistent estimators</topic><topic>Difference equations</topic><topic>Estimators</topic><topic>heavy tails</topic><topic>hidden Markov model</topic><topic>Hill estimator</topic><topic>Linear models</topic><topic>Maximum likelihood estimation</topic><topic>moving average</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>tail empirical process</topic><topic>tail estimator</topic><topic>Time series models</topic><topic>Traffic estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Catalin</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resnick, Sidney</au><au>Stărică, Catalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail Index Estimation for Dependent Data</atitle><jtitle>The Annals of applied probability</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>8</volume><issue>4</issue><spage>1156</spage><epage>1183</epage><pages>1156-1183</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty < t < \infty$ where $\{(A_n, Z_n), - \infty < n < \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoap/1028903376</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 1998-11, Vol.8 (4), p.1156-1183 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1028903376 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 60G10 60G70 ARCH model bilinear model Coefficients Consistent estimators Difference equations Estimators heavy tails hidden Markov model Hill estimator Linear models Maximum likelihood estimation moving average Random variables Stochastic models tail empirical process tail estimator Time series models Traffic estimation |
title | Tail Index Estimation for Dependent Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20Index%20Estimation%20for%20Dependent%20Data&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Resnick,%20Sidney&rft.date=1998-11-01&rft.volume=8&rft.issue=4&rft.spage=1156&rft.epage=1183&rft.pages=1156-1183&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/aoap/1028903376&rft_dat=%3Cjstor_proje%3E2667176%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2667176&rfr_iscdi=true |