Tail Index Estimation for Dependent Data

A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 1998-11, Vol.8 (4), p.1156-1183
Hauptverfasser: Resnick, Sidney, Stărică, Catalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1183
container_issue 4
container_start_page 1156
container_title The Annals of applied probability
container_volume 8
creator Resnick, Sidney
Stărică, Catalin
description A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty < t < \infty$ where $\{(A_n, Z_n), - \infty < n < \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.
doi_str_mv 10.1214/aoap/1028903376
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1028903376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2667176</jstor_id><sourcerecordid>2667176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</originalsourceid><addsrcrecordid>eNptkDtLxEAUhQdRMK7WNhYpbWLmmZmUS3bVhYDNbh0m84CEmAkzI-i_N0vC2lh9cO49h3suAI8IviCMaC6dnHIEsSghIby4AglGhcgEJ_waJAgymDFU0FtwF0IPISxpyRPwfJTdkB5Gbb7TfYjdp4ydG1PrfLozk5n1MaY7GeU9uLFyCOZh5QacXvfH6j2rP94O1bbOFEEiZpIoSFXZcoq0MhRD1YpWUUkYs6ViLTaGlVooziEnGlGhbWEtkRrPaJkhG7BdcifveqOi-VJDp5vJz6f5n8bJrqlO9aquOFdv_qrPGfmSobwLwRt7sSPYnJ_1j-NpcfQhOn9Zx0XB0Tz-BS3mZ3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tail Index Estimation for Dependent Data</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Resnick, Sidney ; Stărică, Catalin</creator><creatorcontrib>Resnick, Sidney ; Stărică, Catalin</creatorcontrib><description>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty &lt; t &lt; \infty$ where $\{(A_n, Z_n), - \infty &lt; n &lt; \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/aoap/1028903376</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60G10 ; 60G70 ; ARCH model ; bilinear model ; Coefficients ; Consistent estimators ; Difference equations ; Estimators ; heavy tails ; hidden Markov model ; Hill estimator ; Linear models ; Maximum likelihood estimation ; moving average ; Random variables ; Stochastic models ; tail empirical process ; tail estimator ; Time series models ; Traffic estimation</subject><ispartof>The Annals of applied probability, 1998-11, Vol.8 (4), p.1156-1183</ispartof><rights>Copyright 1998 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</citedby><cites>FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2667176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2667176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Catalin</creatorcontrib><title>Tail Index Estimation for Dependent Data</title><title>The Annals of applied probability</title><description>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty &lt; t &lt; \infty$ where $\{(A_n, Z_n), - \infty &lt; n &lt; \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</description><subject>60G10</subject><subject>60G70</subject><subject>ARCH model</subject><subject>bilinear model</subject><subject>Coefficients</subject><subject>Consistent estimators</subject><subject>Difference equations</subject><subject>Estimators</subject><subject>heavy tails</subject><subject>hidden Markov model</subject><subject>Hill estimator</subject><subject>Linear models</subject><subject>Maximum likelihood estimation</subject><subject>moving average</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>tail empirical process</subject><subject>tail estimator</subject><subject>Time series models</subject><subject>Traffic estimation</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkDtLxEAUhQdRMK7WNhYpbWLmmZmUS3bVhYDNbh0m84CEmAkzI-i_N0vC2lh9cO49h3suAI8IviCMaC6dnHIEsSghIby4AglGhcgEJ_waJAgymDFU0FtwF0IPISxpyRPwfJTdkB5Gbb7TfYjdp4ydG1PrfLozk5n1MaY7GeU9uLFyCOZh5QacXvfH6j2rP94O1bbOFEEiZpIoSFXZcoq0MhRD1YpWUUkYs6ViLTaGlVooziEnGlGhbWEtkRrPaJkhG7BdcifveqOi-VJDp5vJz6f5n8bJrqlO9aquOFdv_qrPGfmSobwLwRt7sSPYnJ_1j-NpcfQhOn9Zx0XB0Tz-BS3mZ3g</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Resnick, Sidney</creator><creator>Stărică, Catalin</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981101</creationdate><title>Tail Index Estimation for Dependent Data</title><author>Resnick, Sidney ; Stărică, Catalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a3c04c9b741dce420cb8bc4a355f9c5b2ee59d8c77073d148df6ff3ad26ffb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>60G10</topic><topic>60G70</topic><topic>ARCH model</topic><topic>bilinear model</topic><topic>Coefficients</topic><topic>Consistent estimators</topic><topic>Difference equations</topic><topic>Estimators</topic><topic>heavy tails</topic><topic>hidden Markov model</topic><topic>Hill estimator</topic><topic>Linear models</topic><topic>Maximum likelihood estimation</topic><topic>moving average</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>tail empirical process</topic><topic>tail estimator</topic><topic>Time series models</topic><topic>Traffic estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Catalin</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resnick, Sidney</au><au>Stărică, Catalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail Index Estimation for Dependent Data</atitle><jtitle>The Annals of applied probability</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>8</volume><issue>4</issue><spage>1156</spage><epage>1183</epage><pages>1156-1183</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>A popular estimator of the index of regular variation in heavy-tailed models is Hill's estimator. We discuss the consistency of Hill's estimator when it is applied to certain classes of heavy-tailed stationary processes. One class of processes discussed consists of processes which can be appropriately approximated by sequences of m-dependent random variables and special cases of our results show the consistency of Hill's estimator for (i) infinite moving averages with heavy-tail innovations, (ii) a simple stationary bilinear model driven by heavy-tail noise variables and (iii) solutions of stochastic difference equations of the form $Y_t = A_t Y_{t-1} + Z_t, - \infty &lt; t &lt; \infty$ where $\{(A_n, Z_n), - \infty &lt; n &lt; \infty\}$ are iid and the Z's have regularly varying tail probabilities. Another class of problems where our methods work successfully are solutions of stochastic difference equations such as the ARCH process where the process cannot be successfully approximated by m-dependent random variables. A final class of models where Hill estimator consistency is proven by our tail empirical process methods is the class of hidden semi-Markov models.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aoap/1028903376</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 1998-11, Vol.8 (4), p.1156-1183
issn 1050-5164
2168-8737
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aoap_1028903376
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 60G10
60G70
ARCH model
bilinear model
Coefficients
Consistent estimators
Difference equations
Estimators
heavy tails
hidden Markov model
Hill estimator
Linear models
Maximum likelihood estimation
moving average
Random variables
Stochastic models
tail empirical process
tail estimator
Time series models
Traffic estimation
title Tail Index Estimation for Dependent Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20Index%20Estimation%20for%20Dependent%20Data&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Resnick,%20Sidney&rft.date=1998-11-01&rft.volume=8&rft.issue=4&rft.spage=1156&rft.epage=1183&rft.pages=1156-1183&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/aoap/1028903376&rft_dat=%3Cjstor_proje%3E2667176%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2667176&rfr_iscdi=true