The quenched invariance principle for random walks in random environments admitting a bounded cycle representation
We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related...
Gespeichert in:
Veröffentlicht in: | Annales de l'I.H.P. Probabilités et statistiques 2008-06, Vol.44 (3), p.574-591 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 3 |
container_start_page | 574 |
container_title | Annales de l'I.H.P. Probabilités et statistiques |
container_volume | 44 |
creator | Deuschel, Jean-Dominique Kösters, Holger |
description | We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting. |
doi_str_mv | 10.1214/07-AIHP122 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aihp_1211819425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1214_07_AIHP122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRb0AifLY8AVeIwVsx3ktqwpopUqwaNfRxB5Tl8QOdlrUvyeogdXVjM4caS4h95w9csHlEyuS-Wr5zoW4IDMmZJ4wwdIrch3jnjGWVyyfkbDZIf06oFM71NS6IwQLTiHtg3XK9i1S4wMN4LTv6De0n3Gk_mZ0Rxu869ANkYLu7DBY90GBNv7g9ChUJzUaAvYB4wjBYL27JZcG2oh3U96Q7cvzZrFM1m-vq8V8nai04kOS5ZmulCoLLTIj0gZzo0XVoDIAOQptCmVKmTEjoTAgc8MryGTFOS8zA0WT3pD52dsHv0c14EG1VtfjYx2EU-3B1ovtetpOAXbX12N7vOSVFNnoeDg7VPAxBjT_55z9crJmRT21nP4A-PZ2JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><source>NUMDAM</source><creator>Deuschel, Jean-Dominique ; Kösters, Holger</creator><creatorcontrib>Deuschel, Jean-Dominique ; Kösters, Holger</creatorcontrib><description>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</description><identifier>ISSN: 0246-0203</identifier><identifier>DOI: 10.1214/07-AIHP122</identifier><language>eng</language><publisher>Institut Henri Poincaré</publisher><subject>60F17 ; 60K37 ; Invariance principle ; Non-reversible Markov chains ; Random walks in random environments</subject><ispartof>Annales de l'I.H.P. Probabilités et statistiques, 2008-06, Vol.44 (3), p.574-591</ispartof><rights>Copyright 2008 Institut Henri Poincaré</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</citedby><cites>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Kösters, Holger</creatorcontrib><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><title>Annales de l'I.H.P. Probabilités et statistiques</title><description>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</description><subject>60F17</subject><subject>60K37</subject><subject>Invariance principle</subject><subject>Non-reversible Markov chains</subject><subject>Random walks in random environments</subject><issn>0246-0203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRb0AifLY8AVeIwVsx3ktqwpopUqwaNfRxB5Tl8QOdlrUvyeogdXVjM4caS4h95w9csHlEyuS-Wr5zoW4IDMmZJ4wwdIrch3jnjGWVyyfkbDZIf06oFM71NS6IwQLTiHtg3XK9i1S4wMN4LTv6De0n3Gk_mZ0Rxu869ANkYLu7DBY90GBNv7g9ChUJzUaAvYB4wjBYL27JZcG2oh3U96Q7cvzZrFM1m-vq8V8nai04kOS5ZmulCoLLTIj0gZzo0XVoDIAOQptCmVKmTEjoTAgc8MryGTFOS8zA0WT3pD52dsHv0c14EG1VtfjYx2EU-3B1ovtetpOAXbX12N7vOSVFNnoeDg7VPAxBjT_55z9crJmRT21nP4A-PZ2JQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Deuschel, Jean-Dominique</creator><creator>Kösters, Holger</creator><general>Institut Henri Poincaré</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080601</creationdate><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><author>Deuschel, Jean-Dominique ; Kösters, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60F17</topic><topic>60K37</topic><topic>Invariance principle</topic><topic>Non-reversible Markov chains</topic><topic>Random walks in random environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Kösters, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuschel, Jean-Dominique</au><au>Kösters, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</atitle><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>44</volume><issue>3</issue><spage>574</spage><epage>591</epage><pages>574-591</pages><issn>0246-0203</issn><abstract>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</abstract><pub>Institut Henri Poincaré</pub><doi>10.1214/07-AIHP122</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0246-0203 |
ispartof | Annales de l'I.H.P. Probabilités et statistiques, 2008-06, Vol.44 (3), p.574-591 |
issn | 0246-0203 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aihp_1211819425 |
source | NUMDAM |
subjects | 60F17 60K37 Invariance principle Non-reversible Markov chains Random walks in random environments |
title | The quenched invariance principle for random walks in random environments admitting a bounded cycle representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20quenched%20invariance%20principle%20for%20random%20walks%20in%20random%20environments%20admitting%20a%20bounded%20cycle%20representation&rft.jtitle=Annales%20de%20l'I.H.P.%20Probabilit%C3%A9s%20et%20statistiques&rft.au=Deuschel,%20Jean-Dominique&rft.date=2008-06-01&rft.volume=44&rft.issue=3&rft.spage=574&rft.epage=591&rft.pages=574-591&rft.issn=0246-0203&rft_id=info:doi/10.1214/07-AIHP122&rft_dat=%3Ccrossref_proje%3E10_1214_07_AIHP122%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |