The quenched invariance principle for random walks in random environments admitting a bounded cycle representation

We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'I.H.P. Probabilités et statistiques 2008-06, Vol.44 (3), p.574-591
Hauptverfasser: Deuschel, Jean-Dominique, Kösters, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 3
container_start_page 574
container_title Annales de l'I.H.P. Probabilités et statistiques
container_volume 44
creator Deuschel, Jean-Dominique
Kösters, Holger
description We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.
doi_str_mv 10.1214/07-AIHP122
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aihp_1211819425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1214_07_AIHP122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRb0AifLY8AVeIwVsx3ktqwpopUqwaNfRxB5Tl8QOdlrUvyeogdXVjM4caS4h95w9csHlEyuS-Wr5zoW4IDMmZJ4wwdIrch3jnjGWVyyfkbDZIf06oFM71NS6IwQLTiHtg3XK9i1S4wMN4LTv6De0n3Gk_mZ0Rxu869ANkYLu7DBY90GBNv7g9ChUJzUaAvYB4wjBYL27JZcG2oh3U96Q7cvzZrFM1m-vq8V8nai04kOS5ZmulCoLLTIj0gZzo0XVoDIAOQptCmVKmTEjoTAgc8MryGTFOS8zA0WT3pD52dsHv0c14EG1VtfjYx2EU-3B1ovtetpOAXbX12N7vOSVFNnoeDg7VPAxBjT_55z9crJmRT21nP4A-PZ2JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><source>NUMDAM</source><creator>Deuschel, Jean-Dominique ; Kösters, Holger</creator><creatorcontrib>Deuschel, Jean-Dominique ; Kösters, Holger</creatorcontrib><description>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</description><identifier>ISSN: 0246-0203</identifier><identifier>DOI: 10.1214/07-AIHP122</identifier><language>eng</language><publisher>Institut Henri Poincaré</publisher><subject>60F17 ; 60K37 ; Invariance principle ; Non-reversible Markov chains ; Random walks in random environments</subject><ispartof>Annales de l'I.H.P. Probabilités et statistiques, 2008-06, Vol.44 (3), p.574-591</ispartof><rights>Copyright 2008 Institut Henri Poincaré</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</citedby><cites>FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Kösters, Holger</creatorcontrib><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><title>Annales de l'I.H.P. Probabilités et statistiques</title><description>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</description><subject>60F17</subject><subject>60K37</subject><subject>Invariance principle</subject><subject>Non-reversible Markov chains</subject><subject>Random walks in random environments</subject><issn>0246-0203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRb0AifLY8AVeIwVsx3ktqwpopUqwaNfRxB5Tl8QOdlrUvyeogdXVjM4caS4h95w9csHlEyuS-Wr5zoW4IDMmZJ4wwdIrch3jnjGWVyyfkbDZIf06oFM71NS6IwQLTiHtg3XK9i1S4wMN4LTv6De0n3Gk_mZ0Rxu869ANkYLu7DBY90GBNv7g9ChUJzUaAvYB4wjBYL27JZcG2oh3U96Q7cvzZrFM1m-vq8V8nai04kOS5ZmulCoLLTIj0gZzo0XVoDIAOQptCmVKmTEjoTAgc8MryGTFOS8zA0WT3pD52dsHv0c14EG1VtfjYx2EU-3B1ovtetpOAXbX12N7vOSVFNnoeDg7VPAxBjT_55z9crJmRT21nP4A-PZ2JQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Deuschel, Jean-Dominique</creator><creator>Kösters, Holger</creator><general>Institut Henri Poincaré</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080601</creationdate><title>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</title><author>Deuschel, Jean-Dominique ; Kösters, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-565d9cc87d25f23be6fd29becfaa6e2df7cf8450f4a7fa46f19a54911185fa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60F17</topic><topic>60K37</topic><topic>Invariance principle</topic><topic>Non-reversible Markov chains</topic><topic>Random walks in random environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuschel, Jean-Dominique</creatorcontrib><creatorcontrib>Kösters, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuschel, Jean-Dominique</au><au>Kösters, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The quenched invariance principle for random walks in random environments admitting a bounded cycle representation</atitle><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>44</volume><issue>3</issue><spage>574</spage><epage>591</epage><pages>574-591</pages><issn>0246-0203</issn><abstract>We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.</abstract><pub>Institut Henri Poincaré</pub><doi>10.1214/07-AIHP122</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0246-0203
ispartof Annales de l'I.H.P. Probabilités et statistiques, 2008-06, Vol.44 (3), p.574-591
issn 0246-0203
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aihp_1211819425
source NUMDAM
subjects 60F17
60K37
Invariance principle
Non-reversible Markov chains
Random walks in random environments
title The quenched invariance principle for random walks in random environments admitting a bounded cycle representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20quenched%20invariance%20principle%20for%20random%20walks%20in%20random%20environments%20admitting%20a%20bounded%20cycle%20representation&rft.jtitle=Annales%20de%20l'I.H.P.%20Probabilit%C3%A9s%20et%20statistiques&rft.au=Deuschel,%20Jean-Dominique&rft.date=2008-06-01&rft.volume=44&rft.issue=3&rft.spage=574&rft.epage=591&rft.pages=574-591&rft.issn=0246-0203&rft_id=info:doi/10.1214/07-AIHP122&rft_dat=%3Ccrossref_proje%3E10_1214_07_AIHP122%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true