Asymptotics of geometrical navigation on a random set of points in the plane
A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the con...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2011-12, Vol.43 (4), p.899-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 4 |
container_start_page | 899 |
container_title | Advances in applied probability |
container_volume | 43 |
creator | Bonichon, Nicolas Marckert, Jean-François |
description | A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs. |
doi_str_mv | 10.1239/aap/1324045692 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1324045692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1324045692</cupid><jstor_id>23208032</jstor_id><sourcerecordid>23208032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</originalsourceid><addsrcrecordid>eNp1kdGL1DAQxosouJ6--iYEn_Shd5OmTZo3l0U9oeCL9xymTbKXpW1qkj24__5SdtlDRQgMmfzmm5kvRfGewjWtmLxBXG4oq2qoGy6rF8WG1qIpOfD6ZbEBAFq2XLSvizcxHvKViRY2RbeNj9OSfHJDJN6SvfGTScENOJIZH9wek_MzyQdJwFn7iUSTVnLxbk6RuJmke0OWEWfztnhlcYzm3TleFXffvv7a3Zbdz-8_dtuuHGrJUil7gRaFHqi1upeylxYNFZI3wjALjWQ90xppU3EhAFtNhag0tQIl59IKdlV8OekuwR_MkMxxGJ1WS3AThkfl0andXXfOnkN2Rz27kyU-nyTucfyj8HbbqTUH2TcpgT7QzH66tPt9NDGpycXBjOvK_hgVBQoSRM14Rj_-hR78MczZDCUpFbThnGXo-gQNwccYjL0MQEGtX_nvsB9OBYeYfLjQFaugBba-w1kQpz44vTfPbf8j-QSyuKml</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911715663</pqid></control><display><type>article</type><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><source>Cambridge University Press Journals Complete</source><creator>Bonichon, Nicolas ; Marckert, Jean-François</creator><creatorcontrib>Bonichon, Nicolas ; Marckert, Jean-François</creatorcontrib><description>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1324045692</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60B10 ; 60D05 ; 60G55 ; 68W40 ; Asymptotic methods ; Asymptotic properties ; Convergence ; Cost functions ; Density ; Differential equations ; Geometric planes ; Geometry ; Graph theory ; Graphs ; greedy routing ; Integers ; Mathematical analysis ; Mathematical functions ; Mathematics ; Navigation ; Nonuniform ; Planes ; Poisson distribution ; Poisson point process ; Probability ; proximity graph ; Random variables ; Real numbers ; spatial network ; Stochastic Geometry and Statistical Applications ; Studies ; Trajectories</subject><ispartof>Advances in applied probability, 2011-12, Vol.43 (4), p.899-942</ispartof><rights>Copyright © Applied Probability Trust 2011</rights><rights>Copyright Applied Probability Trust Dec 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2011 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</citedby><cites>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</cites><orcidid>0000-0003-3773-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23208032$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867800005231/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,799,828,881,27901,27902,55603,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00649901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonichon, Nicolas</creatorcontrib><creatorcontrib>Marckert, Jean-François</creatorcontrib><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</description><subject>60B10</subject><subject>60D05</subject><subject>60G55</subject><subject>68W40</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Cost functions</subject><subject>Density</subject><subject>Differential equations</subject><subject>Geometric planes</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>greedy routing</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Navigation</subject><subject>Nonuniform</subject><subject>Planes</subject><subject>Poisson distribution</subject><subject>Poisson point process</subject><subject>Probability</subject><subject>proximity graph</subject><subject>Random variables</subject><subject>Real numbers</subject><subject>spatial network</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Trajectories</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kdGL1DAQxosouJ6--iYEn_Shd5OmTZo3l0U9oeCL9xymTbKXpW1qkj24__5SdtlDRQgMmfzmm5kvRfGewjWtmLxBXG4oq2qoGy6rF8WG1qIpOfD6ZbEBAFq2XLSvizcxHvKViRY2RbeNj9OSfHJDJN6SvfGTScENOJIZH9wek_MzyQdJwFn7iUSTVnLxbk6RuJmke0OWEWfztnhlcYzm3TleFXffvv7a3Zbdz-8_dtuuHGrJUil7gRaFHqi1upeylxYNFZI3wjALjWQ90xppU3EhAFtNhag0tQIl59IKdlV8OekuwR_MkMxxGJ1WS3AThkfl0andXXfOnkN2Rz27kyU-nyTucfyj8HbbqTUH2TcpgT7QzH66tPt9NDGpycXBjOvK_hgVBQoSRM14Rj_-hR78MczZDCUpFbThnGXo-gQNwccYjL0MQEGtX_nvsB9OBYeYfLjQFaugBba-w1kQpz44vTfPbf8j-QSyuKml</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Bonichon, Nicolas</creator><creator>Marckert, Jean-François</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3773-262X</orcidid></search><sort><creationdate>20111201</creationdate><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><author>Bonichon, Nicolas ; Marckert, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60B10</topic><topic>60D05</topic><topic>60G55</topic><topic>68W40</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Cost functions</topic><topic>Density</topic><topic>Differential equations</topic><topic>Geometric planes</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>greedy routing</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Navigation</topic><topic>Nonuniform</topic><topic>Planes</topic><topic>Poisson distribution</topic><topic>Poisson point process</topic><topic>Probability</topic><topic>proximity graph</topic><topic>Random variables</topic><topic>Real numbers</topic><topic>spatial network</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonichon, Nicolas</creatorcontrib><creatorcontrib>Marckert, Jean-François</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonichon, Nicolas</au><au>Marckert, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of geometrical navigation on a random set of points in the plane</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>43</volume><issue>4</issue><spage>899</spage><epage>942</epage><pages>899-942</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1324045692</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0003-3773-262X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2011-12, Vol.43 (4), p.899-942 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1324045692 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics; Cambridge University Press Journals Complete |
subjects | 60B10 60D05 60G55 68W40 Asymptotic methods Asymptotic properties Convergence Cost functions Density Differential equations Geometric planes Geometry Graph theory Graphs greedy routing Integers Mathematical analysis Mathematical functions Mathematics Navigation Nonuniform Planes Poisson distribution Poisson point process Probability proximity graph Random variables Real numbers spatial network Stochastic Geometry and Statistical Applications Studies Trajectories |
title | Asymptotics of geometrical navigation on a random set of points in the plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20geometrical%20navigation%20on%20a%20random%20set%20of%20points%20in%20the%20plane&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Bonichon,%20Nicolas&rft.date=2011-12-01&rft.volume=43&rft.issue=4&rft.spage=899&rft.epage=942&rft.pages=899-942&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1324045692&rft_dat=%3Cjstor_proje%3E23208032%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911715663&rft_id=info:pmid/&rft_cupid=10_1239_aap_1324045692&rft_jstor_id=23208032&rfr_iscdi=true |