Asymptotics of geometrical navigation on a random set of points in the plane

A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2011-12, Vol.43 (4), p.899-942
Hauptverfasser: Bonichon, Nicolas, Marckert, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 4
container_start_page 899
container_title Advances in applied probability
container_volume 43
creator Bonichon, Nicolas
Marckert, Jean-François
description A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.
doi_str_mv 10.1239/aap/1324045692
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1324045692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1324045692</cupid><jstor_id>23208032</jstor_id><sourcerecordid>23208032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</originalsourceid><addsrcrecordid>eNp1kdGL1DAQxosouJ6--iYEn_Shd5OmTZo3l0U9oeCL9xymTbKXpW1qkj24__5SdtlDRQgMmfzmm5kvRfGewjWtmLxBXG4oq2qoGy6rF8WG1qIpOfD6ZbEBAFq2XLSvizcxHvKViRY2RbeNj9OSfHJDJN6SvfGTScENOJIZH9wek_MzyQdJwFn7iUSTVnLxbk6RuJmke0OWEWfztnhlcYzm3TleFXffvv7a3Zbdz-8_dtuuHGrJUil7gRaFHqi1upeylxYNFZI3wjALjWQ90xppU3EhAFtNhag0tQIl59IKdlV8OekuwR_MkMxxGJ1WS3AThkfl0andXXfOnkN2Rz27kyU-nyTucfyj8HbbqTUH2TcpgT7QzH66tPt9NDGpycXBjOvK_hgVBQoSRM14Rj_-hR78MczZDCUpFbThnGXo-gQNwccYjL0MQEGtX_nvsB9OBYeYfLjQFaugBba-w1kQpz44vTfPbf8j-QSyuKml</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911715663</pqid></control><display><type>article</type><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><source>Cambridge University Press Journals Complete</source><creator>Bonichon, Nicolas ; Marckert, Jean-François</creator><creatorcontrib>Bonichon, Nicolas ; Marckert, Jean-François</creatorcontrib><description>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1324045692</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60B10 ; 60D05 ; 60G55 ; 68W40 ; Asymptotic methods ; Asymptotic properties ; Convergence ; Cost functions ; Density ; Differential equations ; Geometric planes ; Geometry ; Graph theory ; Graphs ; greedy routing ; Integers ; Mathematical analysis ; Mathematical functions ; Mathematics ; Navigation ; Nonuniform ; Planes ; Poisson distribution ; Poisson point process ; Probability ; proximity graph ; Random variables ; Real numbers ; spatial network ; Stochastic Geometry and Statistical Applications ; Studies ; Trajectories</subject><ispartof>Advances in applied probability, 2011-12, Vol.43 (4), p.899-942</ispartof><rights>Copyright © Applied Probability Trust 2011</rights><rights>Copyright Applied Probability Trust Dec 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2011 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</citedby><cites>FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</cites><orcidid>0000-0003-3773-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23208032$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867800005231/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,799,828,881,27901,27902,55603,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00649901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonichon, Nicolas</creatorcontrib><creatorcontrib>Marckert, Jean-François</creatorcontrib><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</description><subject>60B10</subject><subject>60D05</subject><subject>60G55</subject><subject>68W40</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Cost functions</subject><subject>Density</subject><subject>Differential equations</subject><subject>Geometric planes</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>greedy routing</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Navigation</subject><subject>Nonuniform</subject><subject>Planes</subject><subject>Poisson distribution</subject><subject>Poisson point process</subject><subject>Probability</subject><subject>proximity graph</subject><subject>Random variables</subject><subject>Real numbers</subject><subject>spatial network</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Trajectories</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kdGL1DAQxosouJ6--iYEn_Shd5OmTZo3l0U9oeCL9xymTbKXpW1qkj24__5SdtlDRQgMmfzmm5kvRfGewjWtmLxBXG4oq2qoGy6rF8WG1qIpOfD6ZbEBAFq2XLSvizcxHvKViRY2RbeNj9OSfHJDJN6SvfGTScENOJIZH9wek_MzyQdJwFn7iUSTVnLxbk6RuJmke0OWEWfztnhlcYzm3TleFXffvv7a3Zbdz-8_dtuuHGrJUil7gRaFHqi1upeylxYNFZI3wjALjWQ90xppU3EhAFtNhag0tQIl59IKdlV8OekuwR_MkMxxGJ1WS3AThkfl0andXXfOnkN2Rz27kyU-nyTucfyj8HbbqTUH2TcpgT7QzH66tPt9NDGpycXBjOvK_hgVBQoSRM14Rj_-hR78MczZDCUpFbThnGXo-gQNwccYjL0MQEGtX_nvsB9OBYeYfLjQFaugBba-w1kQpz44vTfPbf8j-QSyuKml</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Bonichon, Nicolas</creator><creator>Marckert, Jean-François</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3773-262X</orcidid></search><sort><creationdate>20111201</creationdate><title>Asymptotics of geometrical navigation on a random set of points in the plane</title><author>Bonichon, Nicolas ; Marckert, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-9b7afa7dc1ffdb99b9fae179657e3f0593b3dda1526770a8d1772d1f7a9669f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60B10</topic><topic>60D05</topic><topic>60G55</topic><topic>68W40</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Cost functions</topic><topic>Density</topic><topic>Differential equations</topic><topic>Geometric planes</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>greedy routing</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Navigation</topic><topic>Nonuniform</topic><topic>Planes</topic><topic>Poisson distribution</topic><topic>Poisson point process</topic><topic>Probability</topic><topic>proximity graph</topic><topic>Random variables</topic><topic>Real numbers</topic><topic>spatial network</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonichon, Nicolas</creatorcontrib><creatorcontrib>Marckert, Jean-François</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonichon, Nicolas</au><au>Marckert, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of geometrical navigation on a random set of points in the plane</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>43</volume><issue>4</issue><spage>899</spage><epage>942</epage><pages>899-942</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A navigation on a set of points S is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where S is a nonuniform Poisson point process (in a finite domain) with intensity going to +∞. We show the convergence of the traveller's path lengths, and give the number of stages and the geometry of the traveller's trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao graphs and random θ-graphs.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1324045692</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0003-3773-262X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2011-12, Vol.43 (4), p.899-942
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1324045692
source Jstor Complete Legacy; JSTOR Mathematics & Statistics; Cambridge University Press Journals Complete
subjects 60B10
60D05
60G55
68W40
Asymptotic methods
Asymptotic properties
Convergence
Cost functions
Density
Differential equations
Geometric planes
Geometry
Graph theory
Graphs
greedy routing
Integers
Mathematical analysis
Mathematical functions
Mathematics
Navigation
Nonuniform
Planes
Poisson distribution
Poisson point process
Probability
proximity graph
Random variables
Real numbers
spatial network
Stochastic Geometry and Statistical Applications
Studies
Trajectories
title Asymptotics of geometrical navigation on a random set of points in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20geometrical%20navigation%20on%20a%20random%20set%20of%20points%20in%20the%20plane&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Bonichon,%20Nicolas&rft.date=2011-12-01&rft.volume=43&rft.issue=4&rft.spage=899&rft.epage=942&rft.pages=899-942&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1324045692&rft_dat=%3Cjstor_proje%3E23208032%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911715663&rft_id=info:pmid/&rft_cupid=10_1239_aap_1324045692&rft_jstor_id=23208032&rfr_iscdi=true