Perturbation analysis for denumerable Markov chains with application to queueing models
We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the differen...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2004-09, Vol.36 (3), p.839-853 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | 3 |
container_start_page | 839 |
container_title | Advances in applied probability |
container_volume | 36 |
creator | Altman, Eitan Avrachenkov, Konstantin E. Núñez-Queija, Rudesindo |
description | We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models. |
doi_str_mv | 10.1239/aap/1093962237 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1093962237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1093962237</cupid><jstor_id>4140411</jstor_id><sourcerecordid>4140411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMjFY7Gn9kdjJBqr4kopgoGKMbMdpHZI42Amo_z1GqdoBMZ3u7r3f6R4AlxjNMKHZXIhujlFGM0YI5UdggmOeRAyx-BhMEEI4ShlPT8GZ91VoKU_RBLy_atcPTore2BaKVtRbbzwsrYOFbodGOyFrDZ-F-7BfUG2EaT38Nv0Giq6rjRp9vYWfgx60adewsYWu_Tk4KUXt9cWuTsHq_u5t8RgtXx6eFrfLSMWE9hGRZSwlR4yoUqmsYClDVFCdJmkmpCrjMFSJVCQlXBRcKaaQTpJg4lwTJekU3IzcztlKq14PqjZF3jnTCLfNrTD5YrXcTXclBJUfggqI6z0ifOH7vLKDC0n4nGDMGGEoDaLZKFLOeu90uT-BUf4b_1_q1WiofG_dXh3jGMUYhzXa8UQjnSnW-nD1H-IP5NeUIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211662608</pqid></control><display><type>article</type><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</creator><creatorcontrib>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</creatorcontrib><description>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1093962237</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60J10 ; 60J22 ; 60J27 ; 60K27 ; Denumerable Markov chain ; Ergodic theory ; General Applied Probability ; geometric ergodicity ; Geometry ; Liapunov functions ; Markov analysis ; Markov chains ; Markov processes ; Mathematical analysis ; Mathematical vectors ; Mathematics ; Matrices ; Modeling ; perturbation analysis ; Power series ; Probability ; quasi-birth-and-death process ; queueing model ; Radii of convergence ; Studies</subject><ispartof>Advances in applied probability, 2004-09, Vol.36 (3), p.839-853</ispartof><rights>Copyright © Applied Probability Trust 2004</rights><rights>Copyright 2004 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</citedby><cites>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4140411$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4140411$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Altman, Eitan</creatorcontrib><creatorcontrib>Avrachenkov, Konstantin E.</creatorcontrib><creatorcontrib>Núñez-Queija, Rudesindo</creatorcontrib><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</description><subject>60J10</subject><subject>60J22</subject><subject>60J27</subject><subject>60K27</subject><subject>Denumerable Markov chain</subject><subject>Ergodic theory</subject><subject>General Applied Probability</subject><subject>geometric ergodicity</subject><subject>Geometry</subject><subject>Liapunov functions</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Modeling</subject><subject>perturbation analysis</subject><subject>Power series</subject><subject>Probability</subject><subject>quasi-birth-and-death process</subject><subject>queueing model</subject><subject>Radii of convergence</subject><subject>Studies</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMjFY7Gn9kdjJBqr4kopgoGKMbMdpHZI42Amo_z1GqdoBMZ3u7r3f6R4AlxjNMKHZXIhujlFGM0YI5UdggmOeRAyx-BhMEEI4ShlPT8GZ91VoKU_RBLy_atcPTore2BaKVtRbbzwsrYOFbodGOyFrDZ-F-7BfUG2EaT38Nv0Giq6rjRp9vYWfgx60adewsYWu_Tk4KUXt9cWuTsHq_u5t8RgtXx6eFrfLSMWE9hGRZSwlR4yoUqmsYClDVFCdJmkmpCrjMFSJVCQlXBRcKaaQTpJg4lwTJekU3IzcztlKq14PqjZF3jnTCLfNrTD5YrXcTXclBJUfggqI6z0ifOH7vLKDC0n4nGDMGGEoDaLZKFLOeu90uT-BUf4b_1_q1WiofG_dXh3jGMUYhzXa8UQjnSnW-nD1H-IP5NeUIA</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Altman, Eitan</creator><creator>Avrachenkov, Konstantin E.</creator><creator>Núñez-Queija, Rudesindo</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><author>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60J10</topic><topic>60J22</topic><topic>60J27</topic><topic>60K27</topic><topic>Denumerable Markov chain</topic><topic>Ergodic theory</topic><topic>General Applied Probability</topic><topic>geometric ergodicity</topic><topic>Geometry</topic><topic>Liapunov functions</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Modeling</topic><topic>perturbation analysis</topic><topic>Power series</topic><topic>Probability</topic><topic>quasi-birth-and-death process</topic><topic>queueing model</topic><topic>Radii of convergence</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altman, Eitan</creatorcontrib><creatorcontrib>Avrachenkov, Konstantin E.</creatorcontrib><creatorcontrib>Núñez-Queija, Rudesindo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altman, Eitan</au><au>Avrachenkov, Konstantin E.</au><au>Núñez-Queija, Rudesindo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation analysis for denumerable Markov chains with application to queueing models</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>36</volume><issue>3</issue><spage>839</spage><epage>853</epage><pages>839-853</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1093962237</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2004-09, Vol.36 (3), p.839-853 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1093962237 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | 60J10 60J22 60J27 60K27 Denumerable Markov chain Ergodic theory General Applied Probability geometric ergodicity Geometry Liapunov functions Markov analysis Markov chains Markov processes Mathematical analysis Mathematical vectors Mathematics Matrices Modeling perturbation analysis Power series Probability quasi-birth-and-death process queueing model Radii of convergence Studies |
title | Perturbation analysis for denumerable Markov chains with application to queueing models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20analysis%20for%20denumerable%20Markov%20chains%20with%20application%20to%20queueing%20models&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Altman,%20Eitan&rft.date=2004-09-01&rft.volume=36&rft.issue=3&rft.spage=839&rft.epage=853&rft.pages=839-853&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1093962237&rft_dat=%3Cjstor_proje%3E4140411%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211662608&rft_id=info:pmid/&rft_cupid=10_1239_aap_1093962237&rft_jstor_id=4140411&rfr_iscdi=true |