Perturbation analysis for denumerable Markov chains with application to queueing models

We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2004-09, Vol.36 (3), p.839-853
Hauptverfasser: Altman, Eitan, Avrachenkov, Konstantin E., Núñez-Queija, Rudesindo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 3
container_start_page 839
container_title Advances in applied probability
container_volume 36
creator Altman, Eitan
Avrachenkov, Konstantin E.
Núñez-Queija, Rudesindo
description We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.
doi_str_mv 10.1239/aap/1093962237
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1093962237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1093962237</cupid><jstor_id>4140411</jstor_id><sourcerecordid>4140411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMjFY7Gn9kdjJBqr4kopgoGKMbMdpHZI42Amo_z1GqdoBMZ3u7r3f6R4AlxjNMKHZXIhujlFGM0YI5UdggmOeRAyx-BhMEEI4ShlPT8GZ91VoKU_RBLy_atcPTore2BaKVtRbbzwsrYOFbodGOyFrDZ-F-7BfUG2EaT38Nv0Giq6rjRp9vYWfgx60adewsYWu_Tk4KUXt9cWuTsHq_u5t8RgtXx6eFrfLSMWE9hGRZSwlR4yoUqmsYClDVFCdJmkmpCrjMFSJVCQlXBRcKaaQTpJg4lwTJekU3IzcztlKq14PqjZF3jnTCLfNrTD5YrXcTXclBJUfggqI6z0ifOH7vLKDC0n4nGDMGGEoDaLZKFLOeu90uT-BUf4b_1_q1WiofG_dXh3jGMUYhzXa8UQjnSnW-nD1H-IP5NeUIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211662608</pqid></control><display><type>article</type><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</creator><creatorcontrib>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</creatorcontrib><description>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1093962237</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60J10 ; 60J22 ; 60J27 ; 60K27 ; Denumerable Markov chain ; Ergodic theory ; General Applied Probability ; geometric ergodicity ; Geometry ; Liapunov functions ; Markov analysis ; Markov chains ; Markov processes ; Mathematical analysis ; Mathematical vectors ; Mathematics ; Matrices ; Modeling ; perturbation analysis ; Power series ; Probability ; quasi-birth-and-death process ; queueing model ; Radii of convergence ; Studies</subject><ispartof>Advances in applied probability, 2004-09, Vol.36 (3), p.839-853</ispartof><rights>Copyright © Applied Probability Trust 2004</rights><rights>Copyright 2004 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</citedby><cites>FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4140411$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4140411$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Altman, Eitan</creatorcontrib><creatorcontrib>Avrachenkov, Konstantin E.</creatorcontrib><creatorcontrib>Núñez-Queija, Rudesindo</creatorcontrib><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</description><subject>60J10</subject><subject>60J22</subject><subject>60J27</subject><subject>60K27</subject><subject>Denumerable Markov chain</subject><subject>Ergodic theory</subject><subject>General Applied Probability</subject><subject>geometric ergodicity</subject><subject>Geometry</subject><subject>Liapunov functions</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Modeling</subject><subject>perturbation analysis</subject><subject>Power series</subject><subject>Probability</subject><subject>quasi-birth-and-death process</subject><subject>queueing model</subject><subject>Radii of convergence</subject><subject>Studies</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMjFY7Gn9kdjJBqr4kopgoGKMbMdpHZI42Amo_z1GqdoBMZ3u7r3f6R4AlxjNMKHZXIhujlFGM0YI5UdggmOeRAyx-BhMEEI4ShlPT8GZ91VoKU_RBLy_atcPTore2BaKVtRbbzwsrYOFbodGOyFrDZ-F-7BfUG2EaT38Nv0Giq6rjRp9vYWfgx60adewsYWu_Tk4KUXt9cWuTsHq_u5t8RgtXx6eFrfLSMWE9hGRZSwlR4yoUqmsYClDVFCdJmkmpCrjMFSJVCQlXBRcKaaQTpJg4lwTJekU3IzcztlKq14PqjZF3jnTCLfNrTD5YrXcTXclBJUfggqI6z0ifOH7vLKDC0n4nGDMGGEoDaLZKFLOeu90uT-BUf4b_1_q1WiofG_dXh3jGMUYhzXa8UQjnSnW-nD1H-IP5NeUIA</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Altman, Eitan</creator><creator>Avrachenkov, Konstantin E.</creator><creator>Núñez-Queija, Rudesindo</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>Perturbation analysis for denumerable Markov chains with application to queueing models</title><author>Altman, Eitan ; Avrachenkov, Konstantin E. ; Núñez-Queija, Rudesindo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-2bf4bb7062cfcc9d68603a3e8589abcf4cc9c5bc2827ad7cc6c0e55f4b77e2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60J10</topic><topic>60J22</topic><topic>60J27</topic><topic>60K27</topic><topic>Denumerable Markov chain</topic><topic>Ergodic theory</topic><topic>General Applied Probability</topic><topic>geometric ergodicity</topic><topic>Geometry</topic><topic>Liapunov functions</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Modeling</topic><topic>perturbation analysis</topic><topic>Power series</topic><topic>Probability</topic><topic>quasi-birth-and-death process</topic><topic>queueing model</topic><topic>Radii of convergence</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altman, Eitan</creatorcontrib><creatorcontrib>Avrachenkov, Konstantin E.</creatorcontrib><creatorcontrib>Núñez-Queija, Rudesindo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altman, Eitan</au><au>Avrachenkov, Konstantin E.</au><au>Núñez-Queija, Rudesindo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation analysis for denumerable Markov chains with application to queueing models</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>36</volume><issue>3</issue><spage>839</spage><epage>853</epage><pages>839-853</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1093962237</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2004-09, Vol.36 (3), p.839-853
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1093962237
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 60J10
60J22
60J27
60K27
Denumerable Markov chain
Ergodic theory
General Applied Probability
geometric ergodicity
Geometry
Liapunov functions
Markov analysis
Markov chains
Markov processes
Mathematical analysis
Mathematical vectors
Mathematics
Matrices
Modeling
perturbation analysis
Power series
Probability
quasi-birth-and-death process
queueing model
Radii of convergence
Studies
title Perturbation analysis for denumerable Markov chains with application to queueing models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20analysis%20for%20denumerable%20Markov%20chains%20with%20application%20to%20queueing%20models&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Altman,%20Eitan&rft.date=2004-09-01&rft.volume=36&rft.issue=3&rft.spage=839&rft.epage=853&rft.pages=839-853&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1093962237&rft_dat=%3Cjstor_proje%3E4140411%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211662608&rft_id=info:pmid/&rft_cupid=10_1239_aap_1093962237&rft_jstor_id=4140411&rfr_iscdi=true