Spectral theory for random closed sets and estimating the covariance via frequency space
A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to t...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2003-09, Vol.35 (3), p.603-613 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 3 |
container_start_page | 603 |
container_title | Advances in applied probability |
container_volume | 35 |
creator | Koch, Karsten Ohser, Joachim Schladitz, Katja |
description | A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts. |
doi_str_mv | 10.1239/aap/1059486820 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1059486820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1059486820</cupid><jstor_id>1428210</jstor_id><sourcerecordid>1428210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMjFY7GltJ3GcDVTxJUVigEpskeOcS6I0DrZbqf89rhq1A2I6-e75d_ceQreUzCiL87mUw5ySNE8EF4ycoQlNsjTihCfnaEIIoZHgmbhEV8614RlngkzQ18cAylvZYf8Nxu6wNhZb2ddmjVVnHNTYgXc4dDA436ylb_rVXoyV2UrbyF4B3jYSaws_G-jVDrtBKrhGF1p2Dm7GOkXL56fPxWtUvL-8LR6LSCUs9pGoE0i4pEyLrIIqrWIgSvNcp7WIeXCQyTTVJE6pIFVV6ZpJlqmcAs9yDXkeT9HDgTtY0wYrsFFdU5eDDafaXWlkUy6WxdgdS0iqPCUVEPdHRLDgfNmaje3D1SWjlFPBOAui2UGkrHHOgj6uoKTc5_-Xenf40Dpv7EmdMMHofkxGnlxXtqlXcNr6D_EXoRmS5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211618262</pqid></control><display><type>article</type><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><source>JSTOR</source><creator>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</creator><creatorcontrib>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</creatorcontrib><description>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1059486820</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>42B10 ; 60D05 ; 62G05 ; 62M40 ; Bartlett spectrum ; Covariance ; Density estimation ; fast Fourier transform ; Fast Fourier transformations ; Fourier transformations ; Geometry ; Image analysis ; Mathematical models ; power spectrum ; Probability ; Random set ; Random variables ; Rotational spectra ; Sine function ; Spectral energy distribution ; Spectroscopy ; Spectrum analysis ; Stochastic Geometry and Statistical Applications ; Studies ; Variance analysis</subject><ispartof>Advances in applied probability, 2003-09, Vol.35 (3), p.603-613</ispartof><rights>Copyright © Applied Probability Trust 2003</rights><rights>Copyright 2003 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</citedby><cites>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428210$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428210$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Koch, Karsten</creatorcontrib><creatorcontrib>Ohser, Joachim</creatorcontrib><creatorcontrib>Schladitz, Katja</creatorcontrib><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</description><subject>42B10</subject><subject>60D05</subject><subject>62G05</subject><subject>62M40</subject><subject>Bartlett spectrum</subject><subject>Covariance</subject><subject>Density estimation</subject><subject>fast Fourier transform</subject><subject>Fast Fourier transformations</subject><subject>Fourier transformations</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Mathematical models</subject><subject>power spectrum</subject><subject>Probability</subject><subject>Random set</subject><subject>Random variables</subject><subject>Rotational spectra</subject><subject>Sine function</subject><subject>Spectral energy distribution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMjFY7GltJ3GcDVTxJUVigEpskeOcS6I0DrZbqf89rhq1A2I6-e75d_ceQreUzCiL87mUw5ySNE8EF4ycoQlNsjTihCfnaEIIoZHgmbhEV8614RlngkzQ18cAylvZYf8Nxu6wNhZb2ddmjVVnHNTYgXc4dDA436ylb_rVXoyV2UrbyF4B3jYSaws_G-jVDrtBKrhGF1p2Dm7GOkXL56fPxWtUvL-8LR6LSCUs9pGoE0i4pEyLrIIqrWIgSvNcp7WIeXCQyTTVJE6pIFVV6ZpJlqmcAs9yDXkeT9HDgTtY0wYrsFFdU5eDDafaXWlkUy6WxdgdS0iqPCUVEPdHRLDgfNmaje3D1SWjlFPBOAui2UGkrHHOgj6uoKTc5_-Xenf40Dpv7EmdMMHofkxGnlxXtqlXcNr6D_EXoRmS5w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Koch, Karsten</creator><creator>Ohser, Joachim</creator><creator>Schladitz, Katja</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030901</creationdate><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><author>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>42B10</topic><topic>60D05</topic><topic>62G05</topic><topic>62M40</topic><topic>Bartlett spectrum</topic><topic>Covariance</topic><topic>Density estimation</topic><topic>fast Fourier transform</topic><topic>Fast Fourier transformations</topic><topic>Fourier transformations</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Mathematical models</topic><topic>power spectrum</topic><topic>Probability</topic><topic>Random set</topic><topic>Random variables</topic><topic>Rotational spectra</topic><topic>Sine function</topic><topic>Spectral energy distribution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Karsten</creatorcontrib><creatorcontrib>Ohser, Joachim</creatorcontrib><creatorcontrib>Schladitz, Katja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Karsten</au><au>Ohser, Joachim</au><au>Schladitz, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral theory for random closed sets and estimating the covariance via frequency space</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>35</volume><issue>3</issue><spage>603</spage><epage>613</epage><pages>603-613</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1059486820</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2003-09, Vol.35 (3), p.603-613 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1059486820 |
source | JSTOR |
subjects | 42B10 60D05 62G05 62M40 Bartlett spectrum Covariance Density estimation fast Fourier transform Fast Fourier transformations Fourier transformations Geometry Image analysis Mathematical models power spectrum Probability Random set Random variables Rotational spectra Sine function Spectral energy distribution Spectroscopy Spectrum analysis Stochastic Geometry and Statistical Applications Studies Variance analysis |
title | Spectral theory for random closed sets and estimating the covariance via frequency space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20theory%20for%20random%20closed%20sets%20and%20estimating%20the%20covariance%20via%20frequency%20space&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Koch,%20Karsten&rft.date=2003-09-01&rft.volume=35&rft.issue=3&rft.spage=603&rft.epage=613&rft.pages=603-613&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1059486820&rft_dat=%3Cjstor_proje%3E1428210%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211618262&rft_id=info:pmid/&rft_cupid=10_1239_aap_1059486820&rft_jstor_id=1428210&rfr_iscdi=true |