Spectral theory for random closed sets and estimating the covariance via frequency space

A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2003-09, Vol.35 (3), p.603-613
Hauptverfasser: Koch, Karsten, Ohser, Joachim, Schladitz, Katja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 3
container_start_page 603
container_title Advances in applied probability
container_volume 35
creator Koch, Karsten
Ohser, Joachim
Schladitz, Katja
description A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.
doi_str_mv 10.1239/aap/1059486820
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1059486820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1059486820</cupid><jstor_id>1428210</jstor_id><sourcerecordid>1428210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMjFY7GltJ3GcDVTxJUVigEpskeOcS6I0DrZbqf89rhq1A2I6-e75d_ceQreUzCiL87mUw5ySNE8EF4ycoQlNsjTihCfnaEIIoZHgmbhEV8614RlngkzQ18cAylvZYf8Nxu6wNhZb2ddmjVVnHNTYgXc4dDA436ylb_rVXoyV2UrbyF4B3jYSaws_G-jVDrtBKrhGF1p2Dm7GOkXL56fPxWtUvL-8LR6LSCUs9pGoE0i4pEyLrIIqrWIgSvNcp7WIeXCQyTTVJE6pIFVV6ZpJlqmcAs9yDXkeT9HDgTtY0wYrsFFdU5eDDafaXWlkUy6WxdgdS0iqPCUVEPdHRLDgfNmaje3D1SWjlFPBOAui2UGkrHHOgj6uoKTc5_-Xenf40Dpv7EmdMMHofkxGnlxXtqlXcNr6D_EXoRmS5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211618262</pqid></control><display><type>article</type><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><source>JSTOR</source><creator>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</creator><creatorcontrib>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</creatorcontrib><description>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1059486820</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>42B10 ; 60D05 ; 62G05 ; 62M40 ; Bartlett spectrum ; Covariance ; Density estimation ; fast Fourier transform ; Fast Fourier transformations ; Fourier transformations ; Geometry ; Image analysis ; Mathematical models ; power spectrum ; Probability ; Random set ; Random variables ; Rotational spectra ; Sine function ; Spectral energy distribution ; Spectroscopy ; Spectrum analysis ; Stochastic Geometry and Statistical Applications ; Studies ; Variance analysis</subject><ispartof>Advances in applied probability, 2003-09, Vol.35 (3), p.603-613</ispartof><rights>Copyright © Applied Probability Trust 2003</rights><rights>Copyright 2003 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</citedby><cites>FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428210$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428210$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Koch, Karsten</creatorcontrib><creatorcontrib>Ohser, Joachim</creatorcontrib><creatorcontrib>Schladitz, Katja</creatorcontrib><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</description><subject>42B10</subject><subject>60D05</subject><subject>62G05</subject><subject>62M40</subject><subject>Bartlett spectrum</subject><subject>Covariance</subject><subject>Density estimation</subject><subject>fast Fourier transform</subject><subject>Fast Fourier transformations</subject><subject>Fourier transformations</subject><subject>Geometry</subject><subject>Image analysis</subject><subject>Mathematical models</subject><subject>power spectrum</subject><subject>Probability</subject><subject>Random set</subject><subject>Random variables</subject><subject>Rotational spectra</subject><subject>Sine function</subject><subject>Spectral energy distribution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMjFY7GltJ3GcDVTxJUVigEpskeOcS6I0DrZbqf89rhq1A2I6-e75d_ceQreUzCiL87mUw5ySNE8EF4ycoQlNsjTihCfnaEIIoZHgmbhEV8614RlngkzQ18cAylvZYf8Nxu6wNhZb2ddmjVVnHNTYgXc4dDA436ylb_rVXoyV2UrbyF4B3jYSaws_G-jVDrtBKrhGF1p2Dm7GOkXL56fPxWtUvL-8LR6LSCUs9pGoE0i4pEyLrIIqrWIgSvNcp7WIeXCQyTTVJE6pIFVV6ZpJlqmcAs9yDXkeT9HDgTtY0wYrsFFdU5eDDafaXWlkUy6WxdgdS0iqPCUVEPdHRLDgfNmaje3D1SWjlFPBOAui2UGkrHHOgj6uoKTc5_-Xenf40Dpv7EmdMMHofkxGnlxXtqlXcNr6D_EXoRmS5w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Koch, Karsten</creator><creator>Ohser, Joachim</creator><creator>Schladitz, Katja</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030901</creationdate><title>Spectral theory for random closed sets and estimating the covariance via frequency space</title><author>Koch, Karsten ; Ohser, Joachim ; Schladitz, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8d4e46a12f87beb5b3e0cf69f5d8361477a55f035180bbbfd2a27c91e679fe993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>42B10</topic><topic>60D05</topic><topic>62G05</topic><topic>62M40</topic><topic>Bartlett spectrum</topic><topic>Covariance</topic><topic>Density estimation</topic><topic>fast Fourier transform</topic><topic>Fast Fourier transformations</topic><topic>Fourier transformations</topic><topic>Geometry</topic><topic>Image analysis</topic><topic>Mathematical models</topic><topic>power spectrum</topic><topic>Probability</topic><topic>Random set</topic><topic>Random variables</topic><topic>Rotational spectra</topic><topic>Sine function</topic><topic>Spectral energy distribution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Karsten</creatorcontrib><creatorcontrib>Ohser, Joachim</creatorcontrib><creatorcontrib>Schladitz, Katja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Karsten</au><au>Ohser, Joachim</au><au>Schladitz, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral theory for random closed sets and estimating the covariance via frequency space</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>35</volume><issue>3</issue><spage>603</spage><epage>613</epage><pages>603-613</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1059486820</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2003-09, Vol.35 (3), p.603-613
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1059486820
source JSTOR
subjects 42B10
60D05
62G05
62M40
Bartlett spectrum
Covariance
Density estimation
fast Fourier transform
Fast Fourier transformations
Fourier transformations
Geometry
Image analysis
Mathematical models
power spectrum
Probability
Random set
Random variables
Rotational spectra
Sine function
Spectral energy distribution
Spectroscopy
Spectrum analysis
Stochastic Geometry and Statistical Applications
Studies
Variance analysis
title Spectral theory for random closed sets and estimating the covariance via frequency space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20theory%20for%20random%20closed%20sets%20and%20estimating%20the%20covariance%20via%20frequency%20space&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Koch,%20Karsten&rft.date=2003-09-01&rft.volume=35&rft.issue=3&rft.spage=603&rft.epage=613&rft.pages=603-613&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1059486820&rft_dat=%3Cjstor_proje%3E1428210%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211618262&rft_id=info:pmid/&rft_cupid=10_1239_aap_1059486820&rft_jstor_id=1428210&rfr_iscdi=true