Variance prediction for pseudosystematic sampling on the sphere

Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2002-09, Vol.34 (3), p.469-483
Hauptverfasser: Gual-Arnau, Ximo, Cruz-Orive, Luis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 3
container_start_page 469
container_title Advances in applied probability
container_volume 34
creator Gual-Arnau, Ximo
Cruz-Orive, Luis M.
description Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.
doi_str_mv 10.1239/aap/1033662160
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1033662160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1033662160</cupid><jstor_id>1428241</jstor_id><sourcerecordid>1428241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-ccfe27056f8b2987fb60d09cefc2caffcb38e379566b7bf327fc7a05d2588743</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwMjHkD6T1R2I7E6CKL6kSS2GNHOfcOmpiy3aH_nuCGsGAmE53977P8CB0S_CCUFYtlfJLghnjnBKOz9CMFKLMOebFOZphjEkuuZCX6CrGblyZkHiG7j9VsGrQkPkArdXJuiEzLmQ-wqF18RgT9CpZnUXV-70dttkYSDvIot9BgGt0YdQ-ws0052jz_LRZvebr95e31eM611SQlGttgApcciMbWklhGo5bXGkwmmpljG6YBCaqkvNGNIZRYbRQuGxpKaUo2Bw9nLA-uA50goPe27b2wfYqHGunbL36WE_XaYw-6l8fI2JxQujgYgxgftoE198C_xbuToUuJhd-0wWVtCDjG0881TfBtluoO3cIw2jhP-IXYZ1-bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variance prediction for pseudosystematic sampling on the sphere</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creator><creatorcontrib>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creatorcontrib><description>Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1033662160</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>52A22 ; 53C65 ; 60D05 ; Approximation ; Bernoulli polynomial ; Coefficients ; covariogram ; Estimators ; Fourier analysis ; Geometric planes ; geometric sampling ; Mathematical functions ; Modeling ; nucleator ; periodic function ; Sample size ; Spheres ; Statistical variance ; stereology ; Stochastic Geometry and Statistical Applications ; Unbiased estimators</subject><ispartof>Advances in applied probability, 2002-09, Vol.34 (3), p.469-483</ispartof><rights>Copyright © Applied Probability Trust 2002</rights><rights>Copyright 2002 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-ccfe27056f8b2987fb60d09cefc2caffcb38e379566b7bf327fc7a05d2588743</citedby><cites>FETCH-LOGICAL-c271t-ccfe27056f8b2987fb60d09cefc2caffcb38e379566b7bf327fc7a05d2588743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428241$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428241$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><title>Variance prediction for pseudosystematic sampling on the sphere</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.</description><subject>52A22</subject><subject>53C65</subject><subject>60D05</subject><subject>Approximation</subject><subject>Bernoulli polynomial</subject><subject>Coefficients</subject><subject>covariogram</subject><subject>Estimators</subject><subject>Fourier analysis</subject><subject>Geometric planes</subject><subject>geometric sampling</subject><subject>Mathematical functions</subject><subject>Modeling</subject><subject>nucleator</subject><subject>periodic function</subject><subject>Sample size</subject><subject>Spheres</subject><subject>Statistical variance</subject><subject>stereology</subject><subject>Stochastic Geometry and Statistical Applications</subject><subject>Unbiased estimators</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwMjHkD6T1R2I7E6CKL6kSS2GNHOfcOmpiy3aH_nuCGsGAmE53977P8CB0S_CCUFYtlfJLghnjnBKOz9CMFKLMOebFOZphjEkuuZCX6CrGblyZkHiG7j9VsGrQkPkArdXJuiEzLmQ-wqF18RgT9CpZnUXV-70dttkYSDvIot9BgGt0YdQ-ws0052jz_LRZvebr95e31eM611SQlGttgApcciMbWklhGo5bXGkwmmpljG6YBCaqkvNGNIZRYbRQuGxpKaUo2Bw9nLA-uA50goPe27b2wfYqHGunbL36WE_XaYw-6l8fI2JxQujgYgxgftoE198C_xbuToUuJhd-0wWVtCDjG0881TfBtluoO3cIw2jhP-IXYZ1-bw</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Gual-Arnau, Ximo</creator><creator>Cruz-Orive, Luis M.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200209</creationdate><title>Variance prediction for pseudosystematic sampling on the sphere</title><author>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-ccfe27056f8b2987fb60d09cefc2caffcb38e379566b7bf327fc7a05d2588743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>52A22</topic><topic>53C65</topic><topic>60D05</topic><topic>Approximation</topic><topic>Bernoulli polynomial</topic><topic>Coefficients</topic><topic>covariogram</topic><topic>Estimators</topic><topic>Fourier analysis</topic><topic>Geometric planes</topic><topic>geometric sampling</topic><topic>Mathematical functions</topic><topic>Modeling</topic><topic>nucleator</topic><topic>periodic function</topic><topic>Sample size</topic><topic>Spheres</topic><topic>Statistical variance</topic><topic>stereology</topic><topic>Stochastic Geometry and Statistical Applications</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gual-Arnau, Ximo</au><au>Cruz-Orive, Luis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance prediction for pseudosystematic sampling on the sphere</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2002-09</date><risdate>2002</risdate><volume>34</volume><issue>3</issue><spage>469</spage><epage>483</epage><pages>469-483</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1033662160</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2002-09, Vol.34 (3), p.469-483
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1033662160
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 52A22
53C65
60D05
Approximation
Bernoulli polynomial
Coefficients
covariogram
Estimators
Fourier analysis
Geometric planes
geometric sampling
Mathematical functions
Modeling
nucleator
periodic function
Sample size
Spheres
Statistical variance
stereology
Stochastic Geometry and Statistical Applications
Unbiased estimators
title Variance prediction for pseudosystematic sampling on the sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%20prediction%20for%20pseudosystematic%20sampling%20on%20the%20sphere&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Gual-Arnau,%20Ximo&rft.date=2002-09&rft.volume=34&rft.issue=3&rft.spage=469&rft.epage=483&rft.pages=469-483&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1239/aap/1033662160&rft_dat=%3Cjstor_proje%3E1428241%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1239_aap_1033662160&rft_jstor_id=1428241&rfr_iscdi=true