On the distance between convex-ordered random variables, with applications

Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2002-06, Vol.34 (2), p.349-374
Hauptverfasser: Boutsikas, Michael V., Vaggelatou, Eutichia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 2
container_start_page 349
container_title Advances in applied probability
container_volume 34
creator Boutsikas, Michael V.
Vaggelatou, Eutichia
description Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.
doi_str_mv 10.1239/aap/1025131222
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1025131222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1025131222</cupid><jstor_id>1428292</jstor_id><sourcerecordid>1428292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-6fec8f60a2daac39fbcd5addebfcee8e6f44e7a20b38b5243e5780d40edde0cd3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMjFEzKTYzpezgSo-VakLnaOLfaGO0jjYbgv_PakatQNiOt3du987PUKuGZ0wHuX3AN09ozxhEeOcn5ARi7MkTGkan5IRpZSFIs3EOblwru7bKBN0RN7nbeCXGCjtPLQSgxL9FrENpGk3-B0aq9CiCiy0yqyCDVgNZYPuLthqvwyg6xotwWvTuktyVkHj8GqoY7J4fvqYvoaz-cvb9HEWSp4LH6YVSlGlFLgCkFFelVIloBSWlUQUmFZxjBlwWkaiTHgcYdJ_qmKKvYZKFY3Jw57bWVOj9LiWjVZFZ_UK7E9hQBfTxWyYDqXPpjhm0yNuD4ivNTpf1GZt2_7rgjOWJjSJRC-a7EXSGucsVgcLRotd4n-pN_uD2nljj-qYC57v1nTgwaq0Wn3i0fUf4i8cmI9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211650538</pqid></control><display><type>article</type><title>On the distance between convex-ordered random variables, with applications</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Boutsikas, Michael V. ; Vaggelatou, Eutichia</creator><creatorcontrib>Boutsikas, Michael V. ; Vaggelatou, Eutichia</creatorcontrib><description>Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1025131222</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60E15 ; 60F05 ; 62E17 ; 62E20 ; ageing distributions ; Applications ; Approximation ; Arithmetic ; Central limit theorem ; compound Poisson approximation ; exponential approximation ; General Applied Probability ; geometric convolutions ; Lead ; Mathematical inequalities ; Mathematical theorems ; negative dependence ; Perceptron convergence procedure ; positive dependence ; Probabilities ; Probability ; probability metrics ; Random variables ; rate of convergence in CLT ; Stochastic models ; Stochastic orders of convex type ; Studies ; Theory</subject><ispartof>Advances in applied probability, 2002-06, Vol.34 (2), p.349-374</ispartof><rights>Copyright © Applied Probability Trust 2002</rights><rights>Copyright 2002 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-6fec8f60a2daac39fbcd5addebfcee8e6f44e7a20b38b5243e5780d40edde0cd3</citedby><cites>FETCH-LOGICAL-c298t-6fec8f60a2daac39fbcd5addebfcee8e6f44e7a20b38b5243e5780d40edde0cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428292$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428292$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Boutsikas, Michael V.</creatorcontrib><creatorcontrib>Vaggelatou, Eutichia</creatorcontrib><title>On the distance between convex-ordered random variables, with applications</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.</description><subject>60E15</subject><subject>60F05</subject><subject>62E17</subject><subject>62E20</subject><subject>ageing distributions</subject><subject>Applications</subject><subject>Approximation</subject><subject>Arithmetic</subject><subject>Central limit theorem</subject><subject>compound Poisson approximation</subject><subject>exponential approximation</subject><subject>General Applied Probability</subject><subject>geometric convolutions</subject><subject>Lead</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>negative dependence</subject><subject>Perceptron convergence procedure</subject><subject>positive dependence</subject><subject>Probabilities</subject><subject>Probability</subject><subject>probability metrics</subject><subject>Random variables</subject><subject>rate of convergence in CLT</subject><subject>Stochastic models</subject><subject>Stochastic orders of convex type</subject><subject>Studies</subject><subject>Theory</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMjFEzKTYzpezgSo-VakLnaOLfaGO0jjYbgv_PakatQNiOt3du987PUKuGZ0wHuX3AN09ozxhEeOcn5ARi7MkTGkan5IRpZSFIs3EOblwru7bKBN0RN7nbeCXGCjtPLQSgxL9FrENpGk3-B0aq9CiCiy0yqyCDVgNZYPuLthqvwyg6xotwWvTuktyVkHj8GqoY7J4fvqYvoaz-cvb9HEWSp4LH6YVSlGlFLgCkFFelVIloBSWlUQUmFZxjBlwWkaiTHgcYdJ_qmKKvYZKFY3Jw57bWVOj9LiWjVZFZ_UK7E9hQBfTxWyYDqXPpjhm0yNuD4ivNTpf1GZt2_7rgjOWJjSJRC-a7EXSGucsVgcLRotd4n-pN_uD2nljj-qYC57v1nTgwaq0Wn3i0fUf4i8cmI9E</recordid><startdate>200206</startdate><enddate>200206</enddate><creator>Boutsikas, Michael V.</creator><creator>Vaggelatou, Eutichia</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200206</creationdate><title>On the distance between convex-ordered random variables, with applications</title><author>Boutsikas, Michael V. ; Vaggelatou, Eutichia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-6fec8f60a2daac39fbcd5addebfcee8e6f44e7a20b38b5243e5780d40edde0cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>60E15</topic><topic>60F05</topic><topic>62E17</topic><topic>62E20</topic><topic>ageing distributions</topic><topic>Applications</topic><topic>Approximation</topic><topic>Arithmetic</topic><topic>Central limit theorem</topic><topic>compound Poisson approximation</topic><topic>exponential approximation</topic><topic>General Applied Probability</topic><topic>geometric convolutions</topic><topic>Lead</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>negative dependence</topic><topic>Perceptron convergence procedure</topic><topic>positive dependence</topic><topic>Probabilities</topic><topic>Probability</topic><topic>probability metrics</topic><topic>Random variables</topic><topic>rate of convergence in CLT</topic><topic>Stochastic models</topic><topic>Stochastic orders of convex type</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutsikas, Michael V.</creatorcontrib><creatorcontrib>Vaggelatou, Eutichia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutsikas, Michael V.</au><au>Vaggelatou, Eutichia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the distance between convex-ordered random variables, with applications</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2002-06</date><risdate>2002</risdate><volume>34</volume><issue>2</issue><spage>349</spage><epage>374</epage><pages>349-374</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1025131222</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2002-06, Vol.34 (2), p.349-374
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1025131222
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 60E15
60F05
62E17
62E20
ageing distributions
Applications
Approximation
Arithmetic
Central limit theorem
compound Poisson approximation
exponential approximation
General Applied Probability
geometric convolutions
Lead
Mathematical inequalities
Mathematical theorems
negative dependence
Perceptron convergence procedure
positive dependence
Probabilities
Probability
probability metrics
Random variables
rate of convergence in CLT
Stochastic models
Stochastic orders of convex type
Studies
Theory
title On the distance between convex-ordered random variables, with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20distance%20between%20convex-ordered%20random%20variables,%20with%20applications&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Boutsikas,%20Michael%20V.&rft.date=2002-06&rft.volume=34&rft.issue=2&rft.spage=349&rft.epage=374&rft.pages=349-374&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1025131222&rft_dat=%3Cjstor_proje%3E1428292%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211650538&rft_id=info:pmid/&rft_cupid=10_1239_aap_1025131222&rft_jstor_id=1428292&rfr_iscdi=true