Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont

Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-07, Vol.99 (14), p.9294-9299
Hauptverfasser: Ishida, Ken-ichiro, Green, Beverley R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9299
container_issue 14
container_start_page 9294
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Ishida, Ken-ichiro
Green, Beverley R.
description Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be supplied by the dinoflagellate host or some of them might have been replaced by haptophyte genes. Sequences of the conserved nuclear psbO gene were obtained from the haptophyte Isochrysis galbana, the peridinin-containing dinoflagellate Heterocapsa triquetra, and the 19′hexanoyloxy-fucoxanthin-containing dinoflagellate Karenia brevis. Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis. It showed clearly that during this tertiary symbiogenesis the original psbO gene in the dinoflagellate nucleus was replaced by a psbO gene from the haptophyte nucleus. The phylogenetic analysis also confirmed that the origin of the peridinin-type dinoflagellate plastid was indeed a red alga.
doi_str_mv 10.1073/pnas.142091799
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_99_14_9294_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3059192</jstor_id><sourcerecordid>3059192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-12471207d7bd6dda15eefbfde51f8f468ac11f1e92a942389d03fab24aadf373</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYpeFKyeEfOLjkGI7aWMjcUClbJFWtILeLSceN1m5drDdavM3-UU4ainLBU4z0jzvOx-aLHtO8ITgqnjXWxkmpKSYk4rzB9klSVk-Kzl-mF1iTKuclbS8yJ6EcIsx5lOGH2cXhGLGC8ous5_foXFW5UhahTZt51W-HNN5a5x3vZEhBtRZ9KmzThu5BWNkhPAerdvBuC3YATmNVndDSvPFwZlDZ7doYVtpG_CIoDfrUK_eorV3EZLPNziANCHF5N3ADmwcDST6um8MSJ8vbOMUKLQeW3cKXYMFVA9pNnkil7KPrm-HCGgDPnbSD6mhcmHY1Z2z8Wn2SKcW8OwUr7LN58VmvsxvVtdf5h9v8qbkNOaEllW6Q6WqWs2UkmQKoGutYEo00-WMyYYQTYBTyUtaMK5woWVNSymVLqriKvtwtO339Q5Ukzbx0ojed7s0kXCyE39XbNeKrTsIQgtSlEn_6qT37sceQhS7LjTjfS24fRAVYaxgM_ZfkLCyIJjRBE6OYONdCB70eRiCxfgtYvwWcf6WJHh5f4U_-Ok97gGj8HeZ8-QhOOXjEq__CQi9NybCXUzkiyN5G6LzZ7TAU044LX4BZqvhuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18431082</pqid></control><display><type>article</type><title>Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ishida, Ken-ichiro ; Green, Beverley R.</creator><creatorcontrib>Ishida, Ken-ichiro ; Green, Beverley R.</creatorcontrib><description>Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be supplied by the dinoflagellate host or some of them might have been replaced by haptophyte genes. Sequences of the conserved nuclear psbO gene were obtained from the haptophyte Isochrysis galbana, the peridinin-containing dinoflagellate Heterocapsa triquetra, and the 19′hexanoyloxy-fucoxanthin-containing dinoflagellate Karenia brevis. Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis. It showed clearly that during this tertiary symbiogenesis the original psbO gene in the dinoflagellate nucleus was replaced by a psbO gene from the haptophyte nucleus. The phylogenetic analysis also confirmed that the origin of the peridinin-type dinoflagellate plastid was indeed a red alga.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.142091799</identifier><identifier>PMID: 12089328</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algae ; Amino Acid Sequence ; Amino acids ; Animals ; Biological Sciences ; Chloroplasts - genetics ; Complementary DNA ; Dinoflagellida - classification ; Dinoflagellida - genetics ; Dinoflagellida - metabolism ; DNA, Protozoan - genetics ; Endosymbionts ; Eukaryota - genetics ; Evolution ; Genes, Protozoan ; Models, Genetic ; Molecular Sequence Data ; Oxygen - metabolism ; Photosynthetic Reaction Center Complex Proteins - genetics ; Photosystem II Protein Complex ; Phylogenetics ; Phylogeny ; Plant cells ; Plastids ; Plastids - genetics ; Proteins ; Sequence Homology, Amino Acid ; Symbiosis - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (14), p.9294-9299</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-12471207d7bd6dda15eefbfde51f8f468ac11f1e92a942389d03fab24aadf373</citedby><cites>FETCH-LOGICAL-c492t-12471207d7bd6dda15eefbfde51f8f468ac11f1e92a942389d03fab24aadf373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3059192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3059192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12089328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Ken-ichiro</creatorcontrib><creatorcontrib>Green, Beverley R.</creatorcontrib><title>Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be supplied by the dinoflagellate host or some of them might have been replaced by haptophyte genes. Sequences of the conserved nuclear psbO gene were obtained from the haptophyte Isochrysis galbana, the peridinin-containing dinoflagellate Heterocapsa triquetra, and the 19′hexanoyloxy-fucoxanthin-containing dinoflagellate Karenia brevis. Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis. It showed clearly that during this tertiary symbiogenesis the original psbO gene in the dinoflagellate nucleus was replaced by a psbO gene from the haptophyte nucleus. The phylogenetic analysis also confirmed that the origin of the peridinin-type dinoflagellate plastid was indeed a red alga.</description><subject>Algae</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chloroplasts - genetics</subject><subject>Complementary DNA</subject><subject>Dinoflagellida - classification</subject><subject>Dinoflagellida - genetics</subject><subject>Dinoflagellida - metabolism</subject><subject>DNA, Protozoan - genetics</subject><subject>Endosymbionts</subject><subject>Eukaryota - genetics</subject><subject>Evolution</subject><subject>Genes, Protozoan</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Oxygen - metabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Photosystem II Protein Complex</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Symbiosis - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhiMEYpeFKyeEfOLjkGI7aWMjcUClbJFWtILeLSceN1m5drDdavM3-UU4ainLBU4z0jzvOx-aLHtO8ITgqnjXWxkmpKSYk4rzB9klSVk-Kzl-mF1iTKuclbS8yJ6EcIsx5lOGH2cXhGLGC8ous5_foXFW5UhahTZt51W-HNN5a5x3vZEhBtRZ9KmzThu5BWNkhPAerdvBuC3YATmNVndDSvPFwZlDZ7doYVtpG_CIoDfrUK_eorV3EZLPNziANCHF5N3ADmwcDST6um8MSJ8vbOMUKLQeW3cKXYMFVA9pNnkil7KPrm-HCGgDPnbSD6mhcmHY1Z2z8Wn2SKcW8OwUr7LN58VmvsxvVtdf5h9v8qbkNOaEllW6Q6WqWs2UkmQKoGutYEo00-WMyYYQTYBTyUtaMK5woWVNSymVLqriKvtwtO339Q5Ukzbx0ojed7s0kXCyE39XbNeKrTsIQgtSlEn_6qT37sceQhS7LjTjfS24fRAVYaxgM_ZfkLCyIJjRBE6OYONdCB70eRiCxfgtYvwWcf6WJHh5f4U_-Ok97gGj8HeZ8-QhOOXjEq__CQi9NybCXUzkiyN5G6LzZ7TAU044LX4BZqvhuQ</recordid><startdate>20020709</startdate><enddate>20020709</enddate><creator>Ishida, Ken-ichiro</creator><creator>Green, Beverley R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020709</creationdate><title>Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont</title><author>Ishida, Ken-ichiro ; Green, Beverley R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-12471207d7bd6dda15eefbfde51f8f468ac11f1e92a942389d03fab24aadf373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algae</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chloroplasts - genetics</topic><topic>Complementary DNA</topic><topic>Dinoflagellida - classification</topic><topic>Dinoflagellida - genetics</topic><topic>Dinoflagellida - metabolism</topic><topic>DNA, Protozoan - genetics</topic><topic>Endosymbionts</topic><topic>Eukaryota - genetics</topic><topic>Evolution</topic><topic>Genes, Protozoan</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Oxygen - metabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Photosystem II Protein Complex</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Symbiosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Ken-ichiro</creatorcontrib><creatorcontrib>Green, Beverley R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Ken-ichiro</au><au>Green, Beverley R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-07-09</date><risdate>2002</risdate><volume>99</volume><issue>14</issue><spage>9294</spage><epage>9299</epage><pages>9294-9299</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Several dinoflagellate species have plastids that more closely resemble those of an unrelated algal group, the haptophytes, suggesting these plastids have been obtained by tertiary endosymbiosis. Because both groups are photosynthetic, all of the genes for nuclear-encoded plastid proteins might be supplied by the dinoflagellate host or some of them might have been replaced by haptophyte genes. Sequences of the conserved nuclear psbO gene were obtained from the haptophyte Isochrysis galbana, the peridinin-containing dinoflagellate Heterocapsa triquetra, and the 19′hexanoyloxy-fucoxanthin-containing dinoflagellate Karenia brevis. Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis. It showed clearly that during this tertiary symbiogenesis the original psbO gene in the dinoflagellate nucleus was replaced by a psbO gene from the haptophyte nucleus. The phylogenetic analysis also confirmed that the origin of the peridinin-type dinoflagellate plastid was indeed a red alga.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12089328</pmid><doi>10.1073/pnas.142091799</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (14), p.9294-9299
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_99_14_9294_fulltext
source Jstor Complete Legacy; MEDLINE; NCBI_PubMed Central(免费); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algae
Amino Acid Sequence
Amino acids
Animals
Biological Sciences
Chloroplasts - genetics
Complementary DNA
Dinoflagellida - classification
Dinoflagellida - genetics
Dinoflagellida - metabolism
DNA, Protozoan - genetics
Endosymbionts
Eukaryota - genetics
Evolution
Genes, Protozoan
Models, Genetic
Molecular Sequence Data
Oxygen - metabolism
Photosynthetic Reaction Center Complex Proteins - genetics
Photosystem II Protein Complex
Phylogenetics
Phylogeny
Plant cells
Plastids
Plastids - genetics
Proteins
Sequence Homology, Amino Acid
Symbiosis - genetics
title Second- and Third-Hand Chloroplasts in Dinoflagellates: Phylogeny of Oxygen-Evolving Enhancer 1 (PsbO) Protein Reveals Replacement of a Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-%20and%20Third-Hand%20Chloroplasts%20in%20Dinoflagellates:%20Phylogeny%20of%20Oxygen-Evolving%20Enhancer%201%20(PsbO)%20Protein%20Reveals%20Replacement%20of%20a%20Nuclear-Encoded%20Plastid%20Gene%20by%20That%20of%20a%20Haptophyte%20Tertiary%20Endosymbiont&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ishida,%20Ken-ichiro&rft.date=2002-07-09&rft.volume=99&rft.issue=14&rft.spage=9294&rft.epage=9299&rft.pages=9294-9299&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.142091799&rft_dat=%3Cjstor_pnas_%3E3059192%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18431082&rft_id=info:pmid/12089328&rft_jstor_id=3059192&rfr_iscdi=true