Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit
Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for al...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2000-03, Vol.97 (6), p.2474-2479 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2479 |
---|---|
container_issue | 6 |
container_start_page | 2474 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Chabes, A Domkin, V Larsson, G Liu, A Graslund, A Wijmenga, S Thelander, L |
description | Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit. |
doi_str_mv | 10.1073/pnas.97.6.2474 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_97_6_2474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122187</jstor_id><sourcerecordid>122187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</originalsourceid><addsrcrecordid>eNqF0slv1DAUB2ALgehQuHJBoIhDTyTYjpdY4lINSytVQhoWiZPlOM7Uo8SeemH570mUAaYc4OTD-37P2wPgMYIVgrx-uXcqVoJXrMKEkztghaBAJSMC3gUrCDEvG4LJCXgQ4w5CKGgD74OTKYqYaMgKbL4YFVOxsa13WQ_GJ9uZYmO6rJOKprhWsVDFhUkm-M6OJlhdXAbvyo3qrFZDufYuKeus2xYfcpudTQ_BvV4N0Tw6rKfg09s3H9cX5dX7d5fr86tSM9SkknPdTudgWOimbxosOBUEdgoJqDijsG1aWhvFlGCt7rEyiLRc9RDxumVQ0foUvFj6xm9mn1u5D3ZU4Yf0ysrX9vO59GEr85glwaIWE3-18MmOptPGpaCGW6nbFWev5dZ_lYgKWk_xs0M8-JtsYpKjjdoMg3LG5yg5FEyQ5v8QcQqxQGyCz_-CO5-Dm55MYohqihmdUbUgHXyMwfS_D4ygnCdAzhMgBZdMzhMwBZ4dX_OIL18-gacHMAd_lY8bnP2rLvs8DMl8TxN8ssBdTD782Qhj1PD6J_q1zj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201352656</pqid></control><display><type>article</type><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</creator><creatorcontrib>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</creatorcontrib><description>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.6.2474</identifier><identifier>PMID: 10716984</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino acids ; Biochemistry ; Biological Sciences ; Biology ; Blotting, Western ; Centrifugation, Density Gradient ; Chemical reactions ; Chromatography ; Circular Dichroism ; Dose-Response Relationship, Drug ; Electron Spin Resonance Spectroscopy ; Elution ; Enzymes ; Escherichia coli - metabolism ; Free radicals ; Free Radicals - chemistry ; Fungal Proteins - chemistry ; Genes ; iron ; Iron - chemistry ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Isoforms ; Proteins ; Recombinant Proteins - chemistry ; Ribonucleotide Reductases - chemistry ; Ribonucleotide Reductases - isolation & purification ; Ribonucleotides ; Saccharomyces cerevisiae ; Temperature ; Time Factors ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (6), p.2474-2479</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 14, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</citedby><cites>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122187$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122187$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10716984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-42939$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Chabes, A</creatorcontrib><creatorcontrib>Domkin, V</creatorcontrib><creatorcontrib>Larsson, G</creatorcontrib><creatorcontrib>Liu, A</creatorcontrib><creatorcontrib>Graslund, A</creatorcontrib><creatorcontrib>Wijmenga, S</creatorcontrib><creatorcontrib>Thelander, L</creatorcontrib><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Centrifugation, Density Gradient</subject><subject>Chemical reactions</subject><subject>Chromatography</subject><subject>Circular Dichroism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Elution</subject><subject>Enzymes</subject><subject>Escherichia coli - metabolism</subject><subject>Free radicals</subject><subject>Free Radicals - chemistry</subject><subject>Fungal Proteins - chemistry</subject><subject>Genes</subject><subject>iron</subject><subject>Iron - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Isoforms</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Ribonucleotide Reductases - chemistry</subject><subject>Ribonucleotide Reductases - isolation & purification</subject><subject>Ribonucleotides</subject><subject>Saccharomyces cerevisiae</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0slv1DAUB2ALgehQuHJBoIhDTyTYjpdY4lINSytVQhoWiZPlOM7Uo8SeemH570mUAaYc4OTD-37P2wPgMYIVgrx-uXcqVoJXrMKEkztghaBAJSMC3gUrCDEvG4LJCXgQ4w5CKGgD74OTKYqYaMgKbL4YFVOxsa13WQ_GJ9uZYmO6rJOKprhWsVDFhUkm-M6OJlhdXAbvyo3qrFZDufYuKeus2xYfcpudTQ_BvV4N0Tw6rKfg09s3H9cX5dX7d5fr86tSM9SkknPdTudgWOimbxosOBUEdgoJqDijsG1aWhvFlGCt7rEyiLRc9RDxumVQ0foUvFj6xm9mn1u5D3ZU4Yf0ysrX9vO59GEr85glwaIWE3-18MmOptPGpaCGW6nbFWev5dZ_lYgKWk_xs0M8-JtsYpKjjdoMg3LG5yg5FEyQ5v8QcQqxQGyCz_-CO5-Dm55MYohqihmdUbUgHXyMwfS_D4ygnCdAzhMgBZdMzhMwBZ4dX_OIL18-gacHMAd_lY8bnP2rLvs8DMl8TxN8ssBdTD782Qhj1PD6J_q1zj8</recordid><startdate>20000314</startdate><enddate>20000314</enddate><creator>Chabes, A</creator><creator>Domkin, V</creator><creator>Larsson, G</creator><creator>Liu, A</creator><creator>Graslund, A</creator><creator>Wijmenga, S</creator><creator>Thelander, L</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20000314</creationdate><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><author>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Centrifugation, Density Gradient</topic><topic>Chemical reactions</topic><topic>Chromatography</topic><topic>Circular Dichroism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Elution</topic><topic>Enzymes</topic><topic>Escherichia coli - metabolism</topic><topic>Free radicals</topic><topic>Free Radicals - chemistry</topic><topic>Fungal Proteins - chemistry</topic><topic>Genes</topic><topic>iron</topic><topic>Iron - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Isoforms</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Ribonucleotide Reductases - chemistry</topic><topic>Ribonucleotide Reductases - isolation & purification</topic><topic>Ribonucleotides</topic><topic>Saccharomyces cerevisiae</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chabes, A</creatorcontrib><creatorcontrib>Domkin, V</creatorcontrib><creatorcontrib>Larsson, G</creatorcontrib><creatorcontrib>Liu, A</creatorcontrib><creatorcontrib>Graslund, A</creatorcontrib><creatorcontrib>Wijmenga, S</creatorcontrib><creatorcontrib>Thelander, L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chabes, A</au><au>Domkin, V</au><au>Larsson, G</au><au>Liu, A</au><au>Graslund, A</au><au>Wijmenga, S</au><au>Thelander, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-03-14</date><risdate>2000</risdate><volume>97</volume><issue>6</issue><spage>2474</spage><epage>2479</epage><pages>2474-2479</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10716984</pmid><doi>10.1073/pnas.97.6.2474</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (6), p.2474-2479 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_97_6_2474 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Biochemistry Biological Sciences Biology Blotting, Western Centrifugation, Density Gradient Chemical reactions Chromatography Circular Dichroism Dose-Response Relationship, Drug Electron Spin Resonance Spectroscopy Elution Enzymes Escherichia coli - metabolism Free radicals Free Radicals - chemistry Fungal Proteins - chemistry Genes iron Iron - chemistry Protein Binding Protein Conformation Protein Folding Protein Isoforms Proteins Recombinant Proteins - chemistry Ribonucleotide Reductases - chemistry Ribonucleotide Reductases - isolation & purification Ribonucleotides Saccharomyces cerevisiae Temperature Time Factors Yeasts |
title | Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Ribonucleotide%20Reductase%20has%20a%20Heterodimeric%20Iron-Radical-Containing%20Subunit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chabes,%20A&rft.date=2000-03-14&rft.volume=97&rft.issue=6&rft.spage=2474&rft.epage=2479&rft.pages=2474-2479&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.6.2474&rft_dat=%3Cjstor_pnas_%3E122187%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201352656&rft_id=info:pmid/10716984&rft_jstor_id=122187&rfr_iscdi=true |