Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit

Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-03, Vol.97 (6), p.2474-2479
Hauptverfasser: Chabes, A, Domkin, V, Larsson, G, Liu, A, Graslund, A, Wijmenga, S, Thelander, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2479
container_issue 6
container_start_page 2474
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Chabes, A
Domkin, V
Larsson, G
Liu, A
Graslund, A
Wijmenga, S
Thelander, L
description Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.
doi_str_mv 10.1073/pnas.97.6.2474
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_97_6_2474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122187</jstor_id><sourcerecordid>122187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</originalsourceid><addsrcrecordid>eNqF0slv1DAUB2ALgehQuHJBoIhDTyTYjpdY4lINSytVQhoWiZPlOM7Uo8SeemH570mUAaYc4OTD-37P2wPgMYIVgrx-uXcqVoJXrMKEkztghaBAJSMC3gUrCDEvG4LJCXgQ4w5CKGgD74OTKYqYaMgKbL4YFVOxsa13WQ_GJ9uZYmO6rJOKprhWsVDFhUkm-M6OJlhdXAbvyo3qrFZDufYuKeus2xYfcpudTQ_BvV4N0Tw6rKfg09s3H9cX5dX7d5fr86tSM9SkknPdTudgWOimbxosOBUEdgoJqDijsG1aWhvFlGCt7rEyiLRc9RDxumVQ0foUvFj6xm9mn1u5D3ZU4Yf0ysrX9vO59GEr85glwaIWE3-18MmOptPGpaCGW6nbFWev5dZ_lYgKWk_xs0M8-JtsYpKjjdoMg3LG5yg5FEyQ5v8QcQqxQGyCz_-CO5-Dm55MYohqihmdUbUgHXyMwfS_D4ygnCdAzhMgBZdMzhMwBZ4dX_OIL18-gacHMAd_lY8bnP2rLvs8DMl8TxN8ssBdTD782Qhj1PD6J_q1zj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201352656</pqid></control><display><type>article</type><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</creator><creatorcontrib>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</creatorcontrib><description>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.6.2474</identifier><identifier>PMID: 10716984</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino acids ; Biochemistry ; Biological Sciences ; Biology ; Blotting, Western ; Centrifugation, Density Gradient ; Chemical reactions ; Chromatography ; Circular Dichroism ; Dose-Response Relationship, Drug ; Electron Spin Resonance Spectroscopy ; Elution ; Enzymes ; Escherichia coli - metabolism ; Free radicals ; Free Radicals - chemistry ; Fungal Proteins - chemistry ; Genes ; iron ; Iron - chemistry ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Isoforms ; Proteins ; Recombinant Proteins - chemistry ; Ribonucleotide Reductases - chemistry ; Ribonucleotide Reductases - isolation &amp; purification ; Ribonucleotides ; Saccharomyces cerevisiae ; Temperature ; Time Factors ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (6), p.2474-2479</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 14, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</citedby><cites>FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122187$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122187$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10716984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-42939$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Chabes, A</creatorcontrib><creatorcontrib>Domkin, V</creatorcontrib><creatorcontrib>Larsson, G</creatorcontrib><creatorcontrib>Liu, A</creatorcontrib><creatorcontrib>Graslund, A</creatorcontrib><creatorcontrib>Wijmenga, S</creatorcontrib><creatorcontrib>Thelander, L</creatorcontrib><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Centrifugation, Density Gradient</subject><subject>Chemical reactions</subject><subject>Chromatography</subject><subject>Circular Dichroism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Elution</subject><subject>Enzymes</subject><subject>Escherichia coli - metabolism</subject><subject>Free radicals</subject><subject>Free Radicals - chemistry</subject><subject>Fungal Proteins - chemistry</subject><subject>Genes</subject><subject>iron</subject><subject>Iron - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Isoforms</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Ribonucleotide Reductases - chemistry</subject><subject>Ribonucleotide Reductases - isolation &amp; purification</subject><subject>Ribonucleotides</subject><subject>Saccharomyces cerevisiae</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0slv1DAUB2ALgehQuHJBoIhDTyTYjpdY4lINSytVQhoWiZPlOM7Uo8SeemH570mUAaYc4OTD-37P2wPgMYIVgrx-uXcqVoJXrMKEkztghaBAJSMC3gUrCDEvG4LJCXgQ4w5CKGgD74OTKYqYaMgKbL4YFVOxsa13WQ_GJ9uZYmO6rJOKprhWsVDFhUkm-M6OJlhdXAbvyo3qrFZDufYuKeus2xYfcpudTQ_BvV4N0Tw6rKfg09s3H9cX5dX7d5fr86tSM9SkknPdTudgWOimbxosOBUEdgoJqDijsG1aWhvFlGCt7rEyiLRc9RDxumVQ0foUvFj6xm9mn1u5D3ZU4Yf0ysrX9vO59GEr85glwaIWE3-18MmOptPGpaCGW6nbFWev5dZ_lYgKWk_xs0M8-JtsYpKjjdoMg3LG5yg5FEyQ5v8QcQqxQGyCz_-CO5-Dm55MYohqihmdUbUgHXyMwfS_D4ygnCdAzhMgBZdMzhMwBZ4dX_OIL18-gacHMAd_lY8bnP2rLvs8DMl8TxN8ssBdTD782Qhj1PD6J_q1zj8</recordid><startdate>20000314</startdate><enddate>20000314</enddate><creator>Chabes, A</creator><creator>Domkin, V</creator><creator>Larsson, G</creator><creator>Liu, A</creator><creator>Graslund, A</creator><creator>Wijmenga, S</creator><creator>Thelander, L</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20000314</creationdate><title>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</title><author>Chabes, A ; Domkin, V ; Larsson, G ; Liu, A ; Graslund, A ; Wijmenga, S ; Thelander, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-77cb107629c8f882975940da190a7650b8b53ea6a96bcf2ae14b7af0173b60a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Centrifugation, Density Gradient</topic><topic>Chemical reactions</topic><topic>Chromatography</topic><topic>Circular Dichroism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Elution</topic><topic>Enzymes</topic><topic>Escherichia coli - metabolism</topic><topic>Free radicals</topic><topic>Free Radicals - chemistry</topic><topic>Fungal Proteins - chemistry</topic><topic>Genes</topic><topic>iron</topic><topic>Iron - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Isoforms</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Ribonucleotide Reductases - chemistry</topic><topic>Ribonucleotide Reductases - isolation &amp; purification</topic><topic>Ribonucleotides</topic><topic>Saccharomyces cerevisiae</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chabes, A</creatorcontrib><creatorcontrib>Domkin, V</creatorcontrib><creatorcontrib>Larsson, G</creatorcontrib><creatorcontrib>Liu, A</creatorcontrib><creatorcontrib>Graslund, A</creatorcontrib><creatorcontrib>Wijmenga, S</creatorcontrib><creatorcontrib>Thelander, L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chabes, A</au><au>Domkin, V</au><au>Larsson, G</au><au>Liu, A</au><au>Graslund, A</au><au>Wijmenga, S</au><au>Thelander, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-03-14</date><risdate>2000</risdate><volume>97</volume><issue>6</issue><spage>2474</spage><epage>2479</epage><pages>2474-2479</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides. Eukaryotes have an α2β2form of RNR consisting of two homodimeric subunits, proteins R1 (α2) and R2 (beta2). The R1 protein is the business end of the enzyme containing the active site and the binding sites for allosteric effectors. The R2 protein is a radical storage device containing an iron center-generated tyrosyl free radical. Previous work has identified an RNR protein in yeast, Rnr4p, which is homologous to other R2 proteins but lacks a number of conserved amino acid residues involved in iron binding. Using highly purified recombinant yeast RNR proteins, we demonstrate that the crucial role of Rnr4p (β′) is to fold correctly and stabilize the radical-storing Rnr2p by forming a stable 1:1 Rnr2p/Rnr4p complex. This complex sediments at 5.6 S as aβ β′heterodimer in a sucrose gradient. In the presence of Rnr1p, both polypeptides of the Rnr2p/Rnr4p heterodimer cosediment at 9.7 S as expected for an α2β β′heterotetramer, where Rnr4p plays an important role in the interaction between the α2and the β β′subunits. The specific activity of the Rnr2p complexed with Rnr4p is 2,250 nmol deoxycytidine 5′-diphosphate formed per min per mg, whereas the homodimer of Rnr2p shows no activity. This difference in activity may be a consequence of the different conformations of the inactive homodimeric Rnr2p and the active Rnr4p-bound form, as shown by CD spectroscopy. Taken together, our results show that the Rnr2p/Rnr4p heterodimer is the active form of the yeast RNR small subunit.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10716984</pmid><doi>10.1073/pnas.97.6.2474</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (6), p.2474-2479
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pnas_primary_97_6_2474
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Biochemistry
Biological Sciences
Biology
Blotting, Western
Centrifugation, Density Gradient
Chemical reactions
Chromatography
Circular Dichroism
Dose-Response Relationship, Drug
Electron Spin Resonance Spectroscopy
Elution
Enzymes
Escherichia coli - metabolism
Free radicals
Free Radicals - chemistry
Fungal Proteins - chemistry
Genes
iron
Iron - chemistry
Protein Binding
Protein Conformation
Protein Folding
Protein Isoforms
Proteins
Recombinant Proteins - chemistry
Ribonucleotide Reductases - chemistry
Ribonucleotide Reductases - isolation & purification
Ribonucleotides
Saccharomyces cerevisiae
Temperature
Time Factors
Yeasts
title Yeast Ribonucleotide Reductase has a Heterodimeric Iron-Radical-Containing Subunit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Ribonucleotide%20Reductase%20has%20a%20Heterodimeric%20Iron-Radical-Containing%20Subunit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chabes,%20A&rft.date=2000-03-14&rft.volume=97&rft.issue=6&rft.spage=2474&rft.epage=2479&rft.pages=2474-2479&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.6.2474&rft_dat=%3Cjstor_pnas_%3E122187%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201352656&rft_id=info:pmid/10716984&rft_jstor_id=122187&rfr_iscdi=true