Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein

Proteolytic processing of the amyloid precursor protein by β -secretase yields A4CT (C99), which is cleaved further by the as yet unknown γ -secretase, yielding the β -amyloid (Aβ) peptide with 40 (Aβ40) or 42 residues (Aβ42). Because the position of γ -secretase cleavage is crucial for the pathogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-03, Vol.96 (6), p.3053-3058
Hauptverfasser: Lichtenthaler, Stefan F., Wang, Rong, Grimm, Heike, Uljon, Sacha N., Masters, Colin L., Beyreuther, Konrad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3058
container_issue 6
container_start_page 3053
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Lichtenthaler, Stefan F.
Wang, Rong
Grimm, Heike
Uljon, Sacha N.
Masters, Colin L.
Beyreuther, Konrad
description Proteolytic processing of the amyloid precursor protein by β -secretase yields A4CT (C99), which is cleaved further by the as yet unknown γ -secretase, yielding the β -amyloid (Aβ) peptide with 40 (Aβ40) or 42 residues (Aβ42). Because the position of γ -secretase cleavage is crucial for the pathogenesis of Alzheimer's disease, we individually replaced all membrane-domain residues of A4CT outside the Aβ domain with phenylalanine, stably transfected the construct in COS7 cells, and determined the effect of these mutations on the cleavage specificity of γ -secretase (Aβ42/Aβ40ratio). Compared with wild-type A4CT, mutations at Val-44, Ile-47, and Val-50 led to decreased Aβ42/Aβ40ratios, whereas mutations at Thr-43, Ile-45, Val-46, Leu-49, and Met-51 led to increased Aβ42/Aβ40ratios. A massive effect was observed for 145F (34-fold increase) making this construct important for the generation of animal models for Alzheimer's disease. Unlike the other mutations, A4CT-V44F was processed mainly to Aβ38, as determined by mass spectrometry. Our data provide a detailed model for the active site of γ -secretase:γ -secretase interacts with A4CT by binding to one side of the α -helical transmembrane domain of A4CT. Mutations in the transmembrane domain of A4CT interface with the interaction between γ -secretase and A4CT and, thus, alter the cleavage specificity of γ -secretase.
doi_str_mv 10.1073/pnas.96.6.3053
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_96_6_3053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>47487</jstor_id><sourcerecordid>47487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-94ce9a9646a2cfde85af8b9df9f008afe4d7462aa3fcb197b0bb9ef03adee7513</originalsourceid><addsrcrecordid>eNp9ks1uEzEUhUcIREthywIJZLGA1QR77PmxxCZK-anUikota8vjuU4czdjB9lSE12LDU_BMeJQmCixY-VrnO9f3WifLnhM8I7im7zZWhhmvZtWM4pI-yE4J5iSvGMcPs1OMizpvWMFOsichrDHGvGzw4-yEYFzXFS1Ps19XoFbSmjAgp1FcAVr0IO_kEtDNBpTRRpm4nbR5_2MFZgD_NqBzE0AGQL9_ojyA8hCn20UHNiYHdKjdousV2G0v-9TcQn6jpE3FEl2NMTW3EEzYv3jrpQ0DDG06AZ27QRq71-bDtnemQ9ce1OiD86lyEYx9mj3Ssg_w7P48y75-_HC7-Jxffvl0sZhf5qokLOacKeCSV6yShdIdNKXUTcs7zTXGjdTAuppVhZRUq5bwusVty0FjKjuAuiT0LHu_67sZ2wE6lVb0shcbbwbpt8JJI_5WrFmJpbsTpGw4TfY393bvvo0QohhMUNCnbwE3BkHqgpSkmMDX_4BrN3qbVhMFJpRxRnGCZjtIeReCB32Yg2Ax5UFMeRC8EpWY8pAMr46nP8J3ATiabzLu5UMDoce-j_A9JvDl_8Ckv9jp6xCdPwCsZk1N_wDbk9ik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201349430</pqid></control><display><type>article</type><title>Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Lichtenthaler, Stefan F. ; Wang, Rong ; Grimm, Heike ; Uljon, Sacha N. ; Masters, Colin L. ; Beyreuther, Konrad</creator><creatorcontrib>Lichtenthaler, Stefan F. ; Wang, Rong ; Grimm, Heike ; Uljon, Sacha N. ; Masters, Colin L. ; Beyreuther, Konrad</creatorcontrib><description>Proteolytic processing of the amyloid precursor protein by β -secretase yields A4CT (C99), which is cleaved further by the as yet unknown γ -secretase, yielding the β -amyloid (Aβ) peptide with 40 (Aβ40) or 42 residues (Aβ42). Because the position of γ -secretase cleavage is crucial for the pathogenesis of Alzheimer's disease, we individually replaced all membrane-domain residues of A4CT outside the Aβ domain with phenylalanine, stably transfected the construct in COS7 cells, and determined the effect of these mutations on the cleavage specificity of γ -secretase (Aβ42/Aβ40ratio). Compared with wild-type A4CT, mutations at Val-44, Ile-47, and Val-50 led to decreased Aβ42/Aβ40ratios, whereas mutations at Thr-43, Ile-45, Val-46, Leu-49, and Met-51 led to increased Aβ42/Aβ40ratios. A massive effect was observed for 145F (34-fold increase) making this construct important for the generation of animal models for Alzheimer's disease. Unlike the other mutations, A4CT-V44F was processed mainly to Aβ38, as determined by mass spectrometry. Our data provide a detailed model for the active site of γ -secretase:γ -secretase interacts with A4CT by binding to one side of the α -helical transmembrane domain of A4CT. Mutations in the transmembrane domain of A4CT interface with the interaction between γ -secretase and A4CT and, thus, alter the cleavage specificity of γ -secretase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.6.3053</identifier><identifier>PMID: 10077635</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alzheimer Disease - metabolism ; Alzheimer's disease ; Alzheimers disease ; Amino acids ; Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; Amyloid Precursor Protein Secretases ; Amyloids ; Animal models ; Animals ; Antibodies ; Aspartic Acid Endopeptidases ; Binding Sites - genetics ; Biological Sciences ; Cell culture techniques ; COS Cells ; Endopeptidases - metabolism ; Enzymes ; Humans ; Mass spectroscopy ; Membranes ; Mutagenesis, Site-Directed ; Mutation ; Peptides ; Phenylalanine ; Plasmids ; Proteins ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-03, Vol.96 (6), p.3053-3058</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 16, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-94ce9a9646a2cfde85af8b9df9f008afe4d7462aa3fcb197b0bb9ef03adee7513</citedby><cites>FETCH-LOGICAL-c514t-94ce9a9646a2cfde85af8b9df9f008afe4d7462aa3fcb197b0bb9ef03adee7513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/47487$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/47487$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10077635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lichtenthaler, Stefan F.</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Grimm, Heike</creatorcontrib><creatorcontrib>Uljon, Sacha N.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Beyreuther, Konrad</creatorcontrib><title>Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Proteolytic processing of the amyloid precursor protein by β -secretase yields A4CT (C99), which is cleaved further by the as yet unknown γ -secretase, yielding the β -amyloid (Aβ) peptide with 40 (Aβ40) or 42 residues (Aβ42). Because the position of γ -secretase cleavage is crucial for the pathogenesis of Alzheimer's disease, we individually replaced all membrane-domain residues of A4CT outside the Aβ domain with phenylalanine, stably transfected the construct in COS7 cells, and determined the effect of these mutations on the cleavage specificity of γ -secretase (Aβ42/Aβ40ratio). Compared with wild-type A4CT, mutations at Val-44, Ile-47, and Val-50 led to decreased Aβ42/Aβ40ratios, whereas mutations at Thr-43, Ile-45, Val-46, Leu-49, and Met-51 led to increased Aβ42/Aβ40ratios. A massive effect was observed for 145F (34-fold increase) making this construct important for the generation of animal models for Alzheimer's disease. Unlike the other mutations, A4CT-V44F was processed mainly to Aβ38, as determined by mass spectrometry. Our data provide a detailed model for the active site of γ -secretase:γ -secretase interacts with A4CT by binding to one side of the α -helical transmembrane domain of A4CT. Mutations in the transmembrane domain of A4CT interface with the interaction between γ -secretase and A4CT and, thus, alter the cleavage specificity of γ -secretase.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amino acids</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid Precursor Protein Secretases</subject><subject>Amyloids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Aspartic Acid Endopeptidases</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Cell culture techniques</subject><subject>COS Cells</subject><subject>Endopeptidases - metabolism</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Mass spectroscopy</subject><subject>Membranes</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Peptides</subject><subject>Phenylalanine</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1uEzEUhUcIREthywIJZLGA1QR77PmxxCZK-anUikota8vjuU4czdjB9lSE12LDU_BMeJQmCixY-VrnO9f3WifLnhM8I7im7zZWhhmvZtWM4pI-yE4J5iSvGMcPs1OMizpvWMFOsichrDHGvGzw4-yEYFzXFS1Ps19XoFbSmjAgp1FcAVr0IO_kEtDNBpTRRpm4nbR5_2MFZgD_NqBzE0AGQL9_ojyA8hCn20UHNiYHdKjdousV2G0v-9TcQn6jpE3FEl2NMTW3EEzYv3jrpQ0DDG06AZ27QRq71-bDtnemQ9ce1OiD86lyEYx9mj3Ssg_w7P48y75-_HC7-Jxffvl0sZhf5qokLOacKeCSV6yShdIdNKXUTcs7zTXGjdTAuppVhZRUq5bwusVty0FjKjuAuiT0LHu_67sZ2wE6lVb0shcbbwbpt8JJI_5WrFmJpbsTpGw4TfY393bvvo0QohhMUNCnbwE3BkHqgpSkmMDX_4BrN3qbVhMFJpRxRnGCZjtIeReCB32Yg2Ax5UFMeRC8EpWY8pAMr46nP8J3ATiabzLu5UMDoce-j_A9JvDl_8Ckv9jp6xCdPwCsZk1N_wDbk9ik</recordid><startdate>19990316</startdate><enddate>19990316</enddate><creator>Lichtenthaler, Stefan F.</creator><creator>Wang, Rong</creator><creator>Grimm, Heike</creator><creator>Uljon, Sacha N.</creator><creator>Masters, Colin L.</creator><creator>Beyreuther, Konrad</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19990316</creationdate><title>Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein</title><author>Lichtenthaler, Stefan F. ; Wang, Rong ; Grimm, Heike ; Uljon, Sacha N. ; Masters, Colin L. ; Beyreuther, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-94ce9a9646a2cfde85af8b9df9f008afe4d7462aa3fcb197b0bb9ef03adee7513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amino acids</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid Precursor Protein Secretases</topic><topic>Amyloids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Aspartic Acid Endopeptidases</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Cell culture techniques</topic><topic>COS Cells</topic><topic>Endopeptidases - metabolism</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Mass spectroscopy</topic><topic>Membranes</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Peptides</topic><topic>Phenylalanine</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtenthaler, Stefan F.</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Grimm, Heike</creatorcontrib><creatorcontrib>Uljon, Sacha N.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Beyreuther, Konrad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtenthaler, Stefan F.</au><au>Wang, Rong</au><au>Grimm, Heike</au><au>Uljon, Sacha N.</au><au>Masters, Colin L.</au><au>Beyreuther, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-03-16</date><risdate>1999</risdate><volume>96</volume><issue>6</issue><spage>3053</spage><epage>3058</epage><pages>3053-3058</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Proteolytic processing of the amyloid precursor protein by β -secretase yields A4CT (C99), which is cleaved further by the as yet unknown γ -secretase, yielding the β -amyloid (Aβ) peptide with 40 (Aβ40) or 42 residues (Aβ42). Because the position of γ -secretase cleavage is crucial for the pathogenesis of Alzheimer's disease, we individually replaced all membrane-domain residues of A4CT outside the Aβ domain with phenylalanine, stably transfected the construct in COS7 cells, and determined the effect of these mutations on the cleavage specificity of γ -secretase (Aβ42/Aβ40ratio). Compared with wild-type A4CT, mutations at Val-44, Ile-47, and Val-50 led to decreased Aβ42/Aβ40ratios, whereas mutations at Thr-43, Ile-45, Val-46, Leu-49, and Met-51 led to increased Aβ42/Aβ40ratios. A massive effect was observed for 145F (34-fold increase) making this construct important for the generation of animal models for Alzheimer's disease. Unlike the other mutations, A4CT-V44F was processed mainly to Aβ38, as determined by mass spectrometry. Our data provide a detailed model for the active site of γ -secretase:γ -secretase interacts with A4CT by binding to one side of the α -helical transmembrane domain of A4CT. Mutations in the transmembrane domain of A4CT interface with the interaction between γ -secretase and A4CT and, thus, alter the cleavage specificity of γ -secretase.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10077635</pmid><doi>10.1073/pnas.96.6.3053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-03, Vol.96 (6), p.3053-3058
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_96_6_3053
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Alzheimer Disease - metabolism
Alzheimer's disease
Alzheimers disease
Amino acids
Amyloid beta-Protein Precursor - genetics
Amyloid beta-Protein Precursor - metabolism
Amyloid Precursor Protein Secretases
Amyloids
Animal models
Animals
Antibodies
Aspartic Acid Endopeptidases
Binding Sites - genetics
Biological Sciences
Cell culture techniques
COS Cells
Endopeptidases - metabolism
Enzymes
Humans
Mass spectroscopy
Membranes
Mutagenesis, Site-Directed
Mutation
Peptides
Phenylalanine
Plasmids
Proteins
Substrate Specificity
title Mechanism of the Cleavage Specificity of Alzheimer's Disease γ -secretase Identified by Phenylalanine-Scanning Mutagenesis of the Transmembrane Domain of the Amyloid Precursor Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20Cleavage%20Specificity%20of%20Alzheimer's%20Disease%20%CE%B3%20-secretase%20Identified%20by%20Phenylalanine-Scanning%20Mutagenesis%20of%20the%20Transmembrane%20Domain%20of%20the%20Amyloid%20Precursor%20Protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lichtenthaler,%20Stefan%20F.&rft.date=1999-03-16&rft.volume=96&rft.issue=6&rft.spage=3053&rft.epage=3058&rft.pages=3053-3058&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.6.3053&rft_dat=%3Cjstor_pnas_%3E47487%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201349430&rft_id=info:pmid/10077635&rft_jstor_id=47487&rfr_iscdi=true