Patterns of nucleotide substitution in Drosophila and mammalian genomes
To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into termin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1999-02, Vol.96 (4), p.1475-1479 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1479 |
---|---|
container_issue | 4 |
container_start_page | 1475 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 96 |
creator | Petrov, D.A. (Harvard University, Cambridge, MA.) Hartl, D.L |
description | To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant |
doi_str_mv | 10.1073/pnas.96.4.1475 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_96_4_1475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>47226</jstor_id><sourcerecordid>47226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKkvhygEJKeLQW4K_E0tcqhYKUiWQKGfLccZbrxJ7sR0E_32z2tWycIDTHN7vecbvIfSS4Ibglr3dBpMbJRveEN6KR2hFsCK15Ao_RiuMaVt3nPKn6FnOG4yxEh0-Q2dKKYx5t0I3X0wpkEKuoqvCbEeIxQ9Q5bnPxZe5-BgqH6rrFHPc3vvRVCYM1WSmyYzehGoNIU6Qn6MnzowZXhzmObr78P7u6mN9-_nm09XlbW0FE6VmvWC8NwRUzyzjwlronORuEECAC8ql4cJ0FMC1lJOOKTXYjmDcu8GBZOfo3f7Z7dxPMFgIJZlRb5OfTPqlo_H6TyX4e72OPzQRvGsX-8XBnuL3GXLRk88WxtEEiHPWcomHckb-C5KWSEkYXsA3f4GbOKewRKApJqyVVPAFavaQXVLMCdzxYIL1rkW9a1ErqbnetbgYXp9-84gfajvRd76jeuK_-Jeu3TyOBX6WBXy1Bze5xHQkeUup_L3FmajNOvmsv30l-xsEl-wB-B_DaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201376254</pqid></control><display><type>article</type><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</creator><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</creatorcontrib><description>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.4.1475</identifier><identifier>PMID: 9990048</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ADN ; Animals ; Base Pairing ; Biological Sciences ; Codon ; CODONS ; DNA ; DROSOPHILA ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila virilis ; EVOLUCION ; EVOLUTION ; Evolution, Molecular ; GENE ; GENES ; Genetic mutation ; Genome ; Genomes ; Insects ; LONG TERMINAL REPEAT ; Mammals ; Mammals - genetics ; Molecular biology ; MUTACION ; MUTATION ; NUCLEOTIDE SEQUENCE ; Nucleotides ; PHYLOGENETICS ; Phylogeny ; Point Mutation ; POINT MUTATIONS ; PSEUDOGENE ; PSEUDOGENES ; REPETITIVE DNA ; Retroelements ; RETROTRANSPOSONS ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; SEUDOGENES ; SPONTANEOUS MUTATIONS ; TRANSITIONS ; TRANSVERSIONS</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-02, Vol.96 (4), p.1475-1479</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 16, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</citedby><cites>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/47226$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/47226$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9990048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.)</creatorcontrib><creatorcontrib>Hartl, D.L</creatorcontrib><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</description><subject>ADN</subject><subject>Animals</subject><subject>Base Pairing</subject><subject>Biological Sciences</subject><subject>Codon</subject><subject>CODONS</subject><subject>DNA</subject><subject>DROSOPHILA</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila virilis</subject><subject>EVOLUCION</subject><subject>EVOLUTION</subject><subject>Evolution, Molecular</subject><subject>GENE</subject><subject>GENES</subject><subject>Genetic mutation</subject><subject>Genome</subject><subject>Genomes</subject><subject>Insects</subject><subject>LONG TERMINAL REPEAT</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Molecular biology</subject><subject>MUTACION</subject><subject>MUTATION</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>Nucleotides</subject><subject>PHYLOGENETICS</subject><subject>Phylogeny</subject><subject>Point Mutation</subject><subject>POINT MUTATIONS</subject><subject>PSEUDOGENE</subject><subject>PSEUDOGENES</subject><subject>REPETITIVE DNA</subject><subject>Retroelements</subject><subject>RETROTRANSPOSONS</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>SEUDOGENES</subject><subject>SPONTANEOUS MUTATIONS</subject><subject>TRANSITIONS</subject><subject>TRANSVERSIONS</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKkvhygEJKeLQW4K_E0tcqhYKUiWQKGfLccZbrxJ7sR0E_32z2tWycIDTHN7vecbvIfSS4Ibglr3dBpMbJRveEN6KR2hFsCK15Ao_RiuMaVt3nPKn6FnOG4yxEh0-Q2dKKYx5t0I3X0wpkEKuoqvCbEeIxQ9Q5bnPxZe5-BgqH6rrFHPc3vvRVCYM1WSmyYzehGoNIU6Qn6MnzowZXhzmObr78P7u6mN9-_nm09XlbW0FE6VmvWC8NwRUzyzjwlronORuEECAC8ql4cJ0FMC1lJOOKTXYjmDcu8GBZOfo3f7Z7dxPMFgIJZlRb5OfTPqlo_H6TyX4e72OPzQRvGsX-8XBnuL3GXLRk88WxtEEiHPWcomHckb-C5KWSEkYXsA3f4GbOKewRKApJqyVVPAFavaQXVLMCdzxYIL1rkW9a1ErqbnetbgYXp9-84gfajvRd76jeuK_-Jeu3TyOBX6WBXy1Bze5xHQkeUup_L3FmajNOvmsv30l-xsEl-wB-B_DaQ</recordid><startdate>19990216</startdate><enddate>19990216</enddate><creator>Petrov, D.A. (Harvard University, Cambridge, MA.)</creator><creator>Hartl, D.L</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990216</creationdate><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><author>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ADN</topic><topic>Animals</topic><topic>Base Pairing</topic><topic>Biological Sciences</topic><topic>Codon</topic><topic>CODONS</topic><topic>DNA</topic><topic>DROSOPHILA</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila virilis</topic><topic>EVOLUCION</topic><topic>EVOLUTION</topic><topic>Evolution, Molecular</topic><topic>GENE</topic><topic>GENES</topic><topic>Genetic mutation</topic><topic>Genome</topic><topic>Genomes</topic><topic>Insects</topic><topic>LONG TERMINAL REPEAT</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Molecular biology</topic><topic>MUTACION</topic><topic>MUTATION</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>Nucleotides</topic><topic>PHYLOGENETICS</topic><topic>Phylogeny</topic><topic>Point Mutation</topic><topic>POINT MUTATIONS</topic><topic>PSEUDOGENE</topic><topic>PSEUDOGENES</topic><topic>REPETITIVE DNA</topic><topic>Retroelements</topic><topic>RETROTRANSPOSONS</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>SEUDOGENES</topic><topic>SPONTANEOUS MUTATIONS</topic><topic>TRANSITIONS</topic><topic>TRANSVERSIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.)</creatorcontrib><creatorcontrib>Hartl, D.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, D.A. (Harvard University, Cambridge, MA.)</au><au>Hartl, D.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of nucleotide substitution in Drosophila and mammalian genomes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-02-16</date><risdate>1999</risdate><volume>96</volume><issue>4</issue><spage>1475</spage><epage>1479</epage><pages>1475-1479</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9990048</pmid><doi>10.1073/pnas.96.4.1475</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1999-02, Vol.96 (4), p.1475-1479 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_96_4_1475 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ADN Animals Base Pairing Biological Sciences Codon CODONS DNA DROSOPHILA Drosophila - genetics Drosophila melanogaster Drosophila melanogaster - genetics Drosophila virilis EVOLUCION EVOLUTION Evolution, Molecular GENE GENES Genetic mutation Genome Genomes Insects LONG TERMINAL REPEAT Mammals Mammals - genetics Molecular biology MUTACION MUTATION NUCLEOTIDE SEQUENCE Nucleotides PHYLOGENETICS Phylogeny Point Mutation POINT MUTATIONS PSEUDOGENE PSEUDOGENES REPETITIVE DNA Retroelements RETROTRANSPOSONS SECUENCIA NUCLEOTIDICA SEQUENCE NUCLEOTIDIQUE SEUDOGENES SPONTANEOUS MUTATIONS TRANSITIONS TRANSVERSIONS |
title | Patterns of nucleotide substitution in Drosophila and mammalian genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20nucleotide%20substitution%20in%20Drosophila%20and%20mammalian%20genomes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Petrov,%20D.A.%20(Harvard%20University,%20Cambridge,%20MA.)&rft.date=1999-02-16&rft.volume=96&rft.issue=4&rft.spage=1475&rft.epage=1479&rft.pages=1475-1479&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.4.1475&rft_dat=%3Cjstor_pnas_%3E47226%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201376254&rft_id=info:pmid/9990048&rft_jstor_id=47226&rfr_iscdi=true |