Patterns of nucleotide substitution in Drosophila and mammalian genomes

To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into termin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-02, Vol.96 (4), p.1475-1479
Hauptverfasser: Petrov, D.A. (Harvard University, Cambridge, MA.), Hartl, D.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue 4
container_start_page 1475
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Petrov, D.A. (Harvard University, Cambridge, MA.)
Hartl, D.L
description To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant
doi_str_mv 10.1073/pnas.96.4.1475
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_96_4_1475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>47226</jstor_id><sourcerecordid>47226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKkvhygEJKeLQW4K_E0tcqhYKUiWQKGfLccZbrxJ7sR0E_32z2tWycIDTHN7vecbvIfSS4Ibglr3dBpMbJRveEN6KR2hFsCK15Ao_RiuMaVt3nPKn6FnOG4yxEh0-Q2dKKYx5t0I3X0wpkEKuoqvCbEeIxQ9Q5bnPxZe5-BgqH6rrFHPc3vvRVCYM1WSmyYzehGoNIU6Qn6MnzowZXhzmObr78P7u6mN9-_nm09XlbW0FE6VmvWC8NwRUzyzjwlronORuEECAC8ql4cJ0FMC1lJOOKTXYjmDcu8GBZOfo3f7Z7dxPMFgIJZlRb5OfTPqlo_H6TyX4e72OPzQRvGsX-8XBnuL3GXLRk88WxtEEiHPWcomHckb-C5KWSEkYXsA3f4GbOKewRKApJqyVVPAFavaQXVLMCdzxYIL1rkW9a1ErqbnetbgYXp9-84gfajvRd76jeuK_-Jeu3TyOBX6WBXy1Bze5xHQkeUup_L3FmajNOvmsv30l-xsEl-wB-B_DaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201376254</pqid></control><display><type>article</type><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</creator><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</creatorcontrib><description>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.4.1475</identifier><identifier>PMID: 9990048</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ADN ; Animals ; Base Pairing ; Biological Sciences ; Codon ; CODONS ; DNA ; DROSOPHILA ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila virilis ; EVOLUCION ; EVOLUTION ; Evolution, Molecular ; GENE ; GENES ; Genetic mutation ; Genome ; Genomes ; Insects ; LONG TERMINAL REPEAT ; Mammals ; Mammals - genetics ; Molecular biology ; MUTACION ; MUTATION ; NUCLEOTIDE SEQUENCE ; Nucleotides ; PHYLOGENETICS ; Phylogeny ; Point Mutation ; POINT MUTATIONS ; PSEUDOGENE ; PSEUDOGENES ; REPETITIVE DNA ; Retroelements ; RETROTRANSPOSONS ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; SEUDOGENES ; SPONTANEOUS MUTATIONS ; TRANSITIONS ; TRANSVERSIONS</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-02, Vol.96 (4), p.1475-1479</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 16, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</citedby><cites>FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/47226$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/47226$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9990048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.)</creatorcontrib><creatorcontrib>Hartl, D.L</creatorcontrib><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</description><subject>ADN</subject><subject>Animals</subject><subject>Base Pairing</subject><subject>Biological Sciences</subject><subject>Codon</subject><subject>CODONS</subject><subject>DNA</subject><subject>DROSOPHILA</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila virilis</subject><subject>EVOLUCION</subject><subject>EVOLUTION</subject><subject>Evolution, Molecular</subject><subject>GENE</subject><subject>GENES</subject><subject>Genetic mutation</subject><subject>Genome</subject><subject>Genomes</subject><subject>Insects</subject><subject>LONG TERMINAL REPEAT</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Molecular biology</subject><subject>MUTACION</subject><subject>MUTATION</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>Nucleotides</subject><subject>PHYLOGENETICS</subject><subject>Phylogeny</subject><subject>Point Mutation</subject><subject>POINT MUTATIONS</subject><subject>PSEUDOGENE</subject><subject>PSEUDOGENES</subject><subject>REPETITIVE DNA</subject><subject>Retroelements</subject><subject>RETROTRANSPOSONS</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>SEUDOGENES</subject><subject>SPONTANEOUS MUTATIONS</subject><subject>TRANSITIONS</subject><subject>TRANSVERSIONS</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKkvhygEJKeLQW4K_E0tcqhYKUiWQKGfLccZbrxJ7sR0E_32z2tWycIDTHN7vecbvIfSS4Ibglr3dBpMbJRveEN6KR2hFsCK15Ao_RiuMaVt3nPKn6FnOG4yxEh0-Q2dKKYx5t0I3X0wpkEKuoqvCbEeIxQ9Q5bnPxZe5-BgqH6rrFHPc3vvRVCYM1WSmyYzehGoNIU6Qn6MnzowZXhzmObr78P7u6mN9-_nm09XlbW0FE6VmvWC8NwRUzyzjwlronORuEECAC8ql4cJ0FMC1lJOOKTXYjmDcu8GBZOfo3f7Z7dxPMFgIJZlRb5OfTPqlo_H6TyX4e72OPzQRvGsX-8XBnuL3GXLRk88WxtEEiHPWcomHckb-C5KWSEkYXsA3f4GbOKewRKApJqyVVPAFavaQXVLMCdzxYIL1rkW9a1ErqbnetbgYXp9-84gfajvRd76jeuK_-Jeu3TyOBX6WBXy1Bze5xHQkeUup_L3FmajNOvmsv30l-xsEl-wB-B_DaQ</recordid><startdate>19990216</startdate><enddate>19990216</enddate><creator>Petrov, D.A. (Harvard University, Cambridge, MA.)</creator><creator>Hartl, D.L</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990216</creationdate><title>Patterns of nucleotide substitution in Drosophila and mammalian genomes</title><author>Petrov, D.A. (Harvard University, Cambridge, MA.) ; Hartl, D.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-3b534ba1e9b3c345cce8f64fd5e1e45246a45a82eef72418399dc8100bfdfe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ADN</topic><topic>Animals</topic><topic>Base Pairing</topic><topic>Biological Sciences</topic><topic>Codon</topic><topic>CODONS</topic><topic>DNA</topic><topic>DROSOPHILA</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila virilis</topic><topic>EVOLUCION</topic><topic>EVOLUTION</topic><topic>Evolution, Molecular</topic><topic>GENE</topic><topic>GENES</topic><topic>Genetic mutation</topic><topic>Genome</topic><topic>Genomes</topic><topic>Insects</topic><topic>LONG TERMINAL REPEAT</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Molecular biology</topic><topic>MUTACION</topic><topic>MUTATION</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>Nucleotides</topic><topic>PHYLOGENETICS</topic><topic>Phylogeny</topic><topic>Point Mutation</topic><topic>POINT MUTATIONS</topic><topic>PSEUDOGENE</topic><topic>PSEUDOGENES</topic><topic>REPETITIVE DNA</topic><topic>Retroelements</topic><topic>RETROTRANSPOSONS</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>SEUDOGENES</topic><topic>SPONTANEOUS MUTATIONS</topic><topic>TRANSITIONS</topic><topic>TRANSVERSIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrov, D.A. (Harvard University, Cambridge, MA.)</creatorcontrib><creatorcontrib>Hartl, D.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, D.A. (Harvard University, Cambridge, MA.)</au><au>Hartl, D.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of nucleotide substitution in Drosophila and mammalian genomes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-02-16</date><risdate>1999</risdate><volume>96</volume><issue>4</issue><spage>1475</spage><epage>1479</epage><pages>1475-1479</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional "dead-on-arrival" copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40-60 million years). The relative frequencies of different point mutations are unequal, but the "transition bias" results largely from an approximately 2-fold excess of G.C to A.T substitutions. Spontaneous mutation is biased toward A.T base pairs, with an expected mutational equilibrium of approximately 65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of G.C to A.T substitution in mammals, probably because of methylated cytosine "hotspots." When the G.C to A.T substitutions are discounted, the remaining differences are considerably reduced and not statistically significant</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9990048</pmid><doi>10.1073/pnas.96.4.1475</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-02, Vol.96 (4), p.1475-1479
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_96_4_1475
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ADN
Animals
Base Pairing
Biological Sciences
Codon
CODONS
DNA
DROSOPHILA
Drosophila - genetics
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila virilis
EVOLUCION
EVOLUTION
Evolution, Molecular
GENE
GENES
Genetic mutation
Genome
Genomes
Insects
LONG TERMINAL REPEAT
Mammals
Mammals - genetics
Molecular biology
MUTACION
MUTATION
NUCLEOTIDE SEQUENCE
Nucleotides
PHYLOGENETICS
Phylogeny
Point Mutation
POINT MUTATIONS
PSEUDOGENE
PSEUDOGENES
REPETITIVE DNA
Retroelements
RETROTRANSPOSONS
SECUENCIA NUCLEOTIDICA
SEQUENCE NUCLEOTIDIQUE
SEUDOGENES
SPONTANEOUS MUTATIONS
TRANSITIONS
TRANSVERSIONS
title Patterns of nucleotide substitution in Drosophila and mammalian genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20nucleotide%20substitution%20in%20Drosophila%20and%20mammalian%20genomes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Petrov,%20D.A.%20(Harvard%20University,%20Cambridge,%20MA.)&rft.date=1999-02-16&rft.volume=96&rft.issue=4&rft.spage=1475&rft.epage=1479&rft.pages=1475-1479&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.4.1475&rft_dat=%3Cjstor_pnas_%3E47226%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201376254&rft_id=info:pmid/9990048&rft_jstor_id=47226&rfr_iscdi=true