Molecular basis of plant-specific acid activation of K+ uptake channels
During stomatal opening potassium uptake into guard cells and K+ channel activation is tightly coupled to proton extrusion. The pH sensor of the K+ uptake channel in these motor cells has, however, not yet been identified. Electrophysiological investigations on the voltage-gated, inward rectifying K...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-04, Vol.94 (9), p.4806-4810 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4810 |
---|---|
container_issue | 9 |
container_start_page | 4806 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Hoth, S. (Universitat Hannover, Hannover, Germany.) Dreyer, I Dietrich, P Becker, D Muller-Rober, B Hedrich, R |
description | During stomatal opening potassium uptake into guard cells and K+ channel activation is tightly coupled to proton extrusion. The pH sensor of the K+ uptake channel in these motor cells has, however, not yet been identified. Electrophysiological investigations on the voltage-gated, inward rectifying K+ channel in guard cell protoplasts from Solanum tuberosum (KST1), and the kst1 gene product expressed in Xenopus oocytes revealed that pH dependence is an intrinsic property of the channel protein. Whereas extracellular acidification resulted in a shift of the voltage-dependence toward less negative voltages, the single-channel conductance was pH-insensitive. Mutational analysis allowed us to relate this acid activation to both extracellular histidines in KST1. One histidine is located within the linker between the transmembrane helices S3 and S4 (H160), and the other within the putative pore-forming region P between S5 and S6 (H271). When both histidines were substituted by alanines the double mutant completely lost its pH sensitivity. Among the single mutants, replacement of the pore histidine, which is highly conserved in plant K+ channels, increased or even inverted the pH sensitivity of KST1. From our molecular and biophysical analyses we conclude that both extracellular sites are part of the pH sensor in plant K+ uptake channels |
doi_str_mv | 10.1073/pnas.94.9.4806 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_94_9_4806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42094</jstor_id><sourcerecordid>42094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-e729a8b7eb86e9ee1b4b6223267356b144d2914876a7e09672cfe759539d16db3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EKkNhywIJKWLRDUrwK35IbFBVCqKIBXRtOc5N6yETp7ZT0X-PRzMaBhZs7MX5zn0dhF4S3BAs2bt5sqnRvNENV1g8QiuCNakF1_gxWmFMZa045U_Rs5TWGGPdKnyCTjQhvLhX6PJrGMEto41VZ5NPVRiqebRTrtMMzg_eVdb5vjzZ39vsw7Qlvrytljnbn1C5WztNMKbn6MlgxwQv9v8puv548eP8U3317fLz-Yer2rVC5hok1VZ1EjolQAOQjneCUkaFZK3oCOc91YQrKawErIWkbgDZ6pbpnoi-Y6fo_a7uvHQb6B1MOdrRzNFvbHwwwXrztzL5W3MT7g3F5TzFfra3x3C3QMpm45ODsWwMYUlGqtITt6SAb_4B12GJU1mtVCIMa6ZwgZod5GJIKcJwmINgs03HbNMxmhtt-K796-PpD_g-jiN96zuoR_6z_-lmWMYxw69cwFc7cJ1yiAeSU6z5H3Gwwdib6JO5_q4lZ4ow9huW37N6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309380</pqid></control><display><type>article</type><title>Molecular basis of plant-specific acid activation of K+ uptake channels</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hoth, S. (Universitat Hannover, Hannover, Germany.) ; Dreyer, I ; Dietrich, P ; Becker, D ; Muller-Rober, B ; Hedrich, R</creator><creatorcontrib>Hoth, S. (Universitat Hannover, Hannover, Germany.) ; Dreyer, I ; Dietrich, P ; Becker, D ; Muller-Rober, B ; Hedrich, R</creatorcontrib><description>During stomatal opening potassium uptake into guard cells and K+ channel activation is tightly coupled to proton extrusion. The pH sensor of the K+ uptake channel in these motor cells has, however, not yet been identified. Electrophysiological investigations on the voltage-gated, inward rectifying K+ channel in guard cell protoplasts from Solanum tuberosum (KST1), and the kst1 gene product expressed in Xenopus oocytes revealed that pH dependence is an intrinsic property of the channel protein. Whereas extracellular acidification resulted in a shift of the voltage-dependence toward less negative voltages, the single-channel conductance was pH-insensitive. Mutational analysis allowed us to relate this acid activation to both extracellular histidines in KST1. One histidine is located within the linker between the transmembrane helices S3 and S4 (H160), and the other within the putative pore-forming region P between S5 and S6 (H271). When both histidines were substituted by alanines the double mutant completely lost its pH sensitivity. Among the single mutants, replacement of the pore histidine, which is highly conserved in plant K+ channels, increased or even inverted the pH sensitivity of KST1. From our molecular and biophysical analyses we conclude that both extracellular sites are part of the pH sensor in plant K+ uptake channels</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.9.4806</identifier><identifier>PMID: 9114073</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Acidification ; ADN ; Asparagine - physiology ; Biological Sciences ; CATION ; CATIONES ; Cell membranes ; CELLULE ; CELULAS ; Cloning, Molecular ; DNA Mutational Analysis ; Electric potential ; ESTRUCTURA CELULAR ; Flowers & plants ; Guard cells ; HIDROGENO ; Histidine - physiology ; Hydrogen-Ion Concentration ; HYDROGENE ; ION ; Ion Channel Gating ; IONES ; Ions ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; MUTACION INDUCIDA ; Mutation ; MUTATION PROVOQUEE ; Oocytes ; Patch-Clamp Techniques ; Plant Leaves - cytology ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; POTASIO ; POTASSIUM ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Potassium Channels, Inwardly Rectifying ; PROTEINAS VEGETALES ; PROTEINE VEGETALE ; Proton Pumps ; Protons ; PROTOPLASTE ; PROTOPLASTOS ; Protoplasts ; Recombinant Proteins - metabolism ; Sensors ; Sequence Alignment ; Sequence Analysis, DNA ; Signal Transduction ; SOLANUM TUBEROSUM ; Species Specificity ; STRUCTURE CELLULAIRE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-04, Vol.94 (9), p.4806-4810</ispartof><rights>Copyright 1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Apr 29, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-e729a8b7eb86e9ee1b4b6223267356b144d2914876a7e09672cfe759539d16db3</citedby><cites>FETCH-LOGICAL-c567t-e729a8b7eb86e9ee1b4b6223267356b144d2914876a7e09672cfe759539d16db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42094$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42094$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9114073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoth, S. (Universitat Hannover, Hannover, Germany.)</creatorcontrib><creatorcontrib>Dreyer, I</creatorcontrib><creatorcontrib>Dietrich, P</creatorcontrib><creatorcontrib>Becker, D</creatorcontrib><creatorcontrib>Muller-Rober, B</creatorcontrib><creatorcontrib>Hedrich, R</creatorcontrib><title>Molecular basis of plant-specific acid activation of K+ uptake channels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During stomatal opening potassium uptake into guard cells and K+ channel activation is tightly coupled to proton extrusion. The pH sensor of the K+ uptake channel in these motor cells has, however, not yet been identified. Electrophysiological investigations on the voltage-gated, inward rectifying K+ channel in guard cell protoplasts from Solanum tuberosum (KST1), and the kst1 gene product expressed in Xenopus oocytes revealed that pH dependence is an intrinsic property of the channel protein. Whereas extracellular acidification resulted in a shift of the voltage-dependence toward less negative voltages, the single-channel conductance was pH-insensitive. Mutational analysis allowed us to relate this acid activation to both extracellular histidines in KST1. One histidine is located within the linker between the transmembrane helices S3 and S4 (H160), and the other within the putative pore-forming region P between S5 and S6 (H271). When both histidines were substituted by alanines the double mutant completely lost its pH sensitivity. Among the single mutants, replacement of the pore histidine, which is highly conserved in plant K+ channels, increased or even inverted the pH sensitivity of KST1. From our molecular and biophysical analyses we conclude that both extracellular sites are part of the pH sensor in plant K+ uptake channels</description><subject>Acidification</subject><subject>ADN</subject><subject>Asparagine - physiology</subject><subject>Biological Sciences</subject><subject>CATION</subject><subject>CATIONES</subject><subject>Cell membranes</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>Cloning, Molecular</subject><subject>DNA Mutational Analysis</subject><subject>Electric potential</subject><subject>ESTRUCTURA CELULAR</subject><subject>Flowers & plants</subject><subject>Guard cells</subject><subject>HIDROGENO</subject><subject>Histidine - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>HYDROGENE</subject><subject>ION</subject><subject>Ion Channel Gating</subject><subject>IONES</subject><subject>Ions</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>MUTACION INDUCIDA</subject><subject>Mutation</subject><subject>MUTATION PROVOQUEE</subject><subject>Oocytes</subject><subject>Patch-Clamp Techniques</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>POTASIO</subject><subject>POTASSIUM</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>PROTEINAS VEGETALES</subject><subject>PROTEINE VEGETALE</subject><subject>Proton Pumps</subject><subject>Protons</subject><subject>PROTOPLASTE</subject><subject>PROTOPLASTOS</subject><subject>Protoplasts</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sensors</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Signal Transduction</subject><subject>SOLANUM TUBEROSUM</subject><subject>Species Specificity</subject><subject>STRUCTURE CELLULAIRE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EKkNhywIJKWLRDUrwK35IbFBVCqKIBXRtOc5N6yETp7ZT0X-PRzMaBhZs7MX5zn0dhF4S3BAs2bt5sqnRvNENV1g8QiuCNakF1_gxWmFMZa045U_Rs5TWGGPdKnyCTjQhvLhX6PJrGMEto41VZ5NPVRiqebRTrtMMzg_eVdb5vjzZ39vsw7Qlvrytljnbn1C5WztNMKbn6MlgxwQv9v8puv548eP8U3317fLz-Yer2rVC5hok1VZ1EjolQAOQjneCUkaFZK3oCOc91YQrKawErIWkbgDZ6pbpnoi-Y6fo_a7uvHQb6B1MOdrRzNFvbHwwwXrztzL5W3MT7g3F5TzFfra3x3C3QMpm45ODsWwMYUlGqtITt6SAb_4B12GJU1mtVCIMa6ZwgZod5GJIKcJwmINgs03HbNMxmhtt-K796-PpD_g-jiN96zuoR_6z_-lmWMYxw69cwFc7cJ1yiAeSU6z5H3Gwwdib6JO5_q4lZ4ow9huW37N6</recordid><startdate>19970429</startdate><enddate>19970429</enddate><creator>Hoth, S. (Universitat Hannover, Hannover, Germany.)</creator><creator>Dreyer, I</creator><creator>Dietrich, P</creator><creator>Becker, D</creator><creator>Muller-Rober, B</creator><creator>Hedrich, R</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970429</creationdate><title>Molecular basis of plant-specific acid activation of K+ uptake channels</title><author>Hoth, S. (Universitat Hannover, Hannover, Germany.) ; Dreyer, I ; Dietrich, P ; Becker, D ; Muller-Rober, B ; Hedrich, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-e729a8b7eb86e9ee1b4b6223267356b144d2914876a7e09672cfe759539d16db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acidification</topic><topic>ADN</topic><topic>Asparagine - physiology</topic><topic>Biological Sciences</topic><topic>CATION</topic><topic>CATIONES</topic><topic>Cell membranes</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>Cloning, Molecular</topic><topic>DNA Mutational Analysis</topic><topic>Electric potential</topic><topic>ESTRUCTURA CELULAR</topic><topic>Flowers & plants</topic><topic>Guard cells</topic><topic>HIDROGENO</topic><topic>Histidine - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>HYDROGENE</topic><topic>ION</topic><topic>Ion Channel Gating</topic><topic>IONES</topic><topic>Ions</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>MUTACION INDUCIDA</topic><topic>Mutation</topic><topic>MUTATION PROVOQUEE</topic><topic>Oocytes</topic><topic>Patch-Clamp Techniques</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>POTASIO</topic><topic>POTASSIUM</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>PROTEINAS VEGETALES</topic><topic>PROTEINE VEGETALE</topic><topic>Proton Pumps</topic><topic>Protons</topic><topic>PROTOPLASTE</topic><topic>PROTOPLASTOS</topic><topic>Protoplasts</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sensors</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Signal Transduction</topic><topic>SOLANUM TUBEROSUM</topic><topic>Species Specificity</topic><topic>STRUCTURE CELLULAIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoth, S. (Universitat Hannover, Hannover, Germany.)</creatorcontrib><creatorcontrib>Dreyer, I</creatorcontrib><creatorcontrib>Dietrich, P</creatorcontrib><creatorcontrib>Becker, D</creatorcontrib><creatorcontrib>Muller-Rober, B</creatorcontrib><creatorcontrib>Hedrich, R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoth, S. (Universitat Hannover, Hannover, Germany.)</au><au>Dreyer, I</au><au>Dietrich, P</au><au>Becker, D</au><au>Muller-Rober, B</au><au>Hedrich, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of plant-specific acid activation of K+ uptake channels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-04-29</date><risdate>1997</risdate><volume>94</volume><issue>9</issue><spage>4806</spage><epage>4810</epage><pages>4806-4810</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During stomatal opening potassium uptake into guard cells and K+ channel activation is tightly coupled to proton extrusion. The pH sensor of the K+ uptake channel in these motor cells has, however, not yet been identified. Electrophysiological investigations on the voltage-gated, inward rectifying K+ channel in guard cell protoplasts from Solanum tuberosum (KST1), and the kst1 gene product expressed in Xenopus oocytes revealed that pH dependence is an intrinsic property of the channel protein. Whereas extracellular acidification resulted in a shift of the voltage-dependence toward less negative voltages, the single-channel conductance was pH-insensitive. Mutational analysis allowed us to relate this acid activation to both extracellular histidines in KST1. One histidine is located within the linker between the transmembrane helices S3 and S4 (H160), and the other within the putative pore-forming region P between S5 and S6 (H271). When both histidines were substituted by alanines the double mutant completely lost its pH sensitivity. Among the single mutants, replacement of the pore histidine, which is highly conserved in plant K+ channels, increased or even inverted the pH sensitivity of KST1. From our molecular and biophysical analyses we conclude that both extracellular sites are part of the pH sensor in plant K+ uptake channels</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9114073</pmid><doi>10.1073/pnas.94.9.4806</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-04, Vol.94 (9), p.4806-4810 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_94_9_4806 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acidification ADN Asparagine - physiology Biological Sciences CATION CATIONES Cell membranes CELLULE CELULAS Cloning, Molecular DNA Mutational Analysis Electric potential ESTRUCTURA CELULAR Flowers & plants Guard cells HIDROGENO Histidine - physiology Hydrogen-Ion Concentration HYDROGENE ION Ion Channel Gating IONES Ions Models, Molecular Molecular biology Molecular Sequence Data MUTACION INDUCIDA Mutation MUTATION PROVOQUEE Oocytes Patch-Clamp Techniques Plant Leaves - cytology Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plants POTASIO POTASSIUM Potassium Channels - genetics Potassium Channels - metabolism Potassium Channels, Inwardly Rectifying PROTEINAS VEGETALES PROTEINE VEGETALE Proton Pumps Protons PROTOPLASTE PROTOPLASTOS Protoplasts Recombinant Proteins - metabolism Sensors Sequence Alignment Sequence Analysis, DNA Signal Transduction SOLANUM TUBEROSUM Species Specificity STRUCTURE CELLULAIRE |
title | Molecular basis of plant-specific acid activation of K+ uptake channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20plant-specific%20acid%20activation%20of%20K+%20uptake%20channels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hoth,%20S.%20(Universitat%20Hannover,%20Hannover,%20Germany.)&rft.date=1997-04-29&rft.volume=94&rft.issue=9&rft.spage=4806&rft.epage=4810&rft.pages=4806-4810&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.9.4806&rft_dat=%3Cjstor_pnas_%3E42094%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201309380&rft_id=info:pmid/9114073&rft_jstor_id=42094&rfr_iscdi=true |