Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks
Cats were instrumentally conditioned to generate grouped fast (20- to 50-Hz) oscillations in motor cortex (area 4). Over seven experimental sessions, there was a spatially selective increased generation of grouped fast oscillations in that electroencephalogram lead. This locally increased generation...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-03, Vol.94 (5), p.1985-1989 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1989 |
---|---|
container_issue | 5 |
container_start_page | 1985 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Amzica, Florin Neckelmann, Dag Steriade, Mircea |
description | Cats were instrumentally conditioned to generate grouped fast (20- to 50-Hz) oscillations in motor cortex (area 4). Over seven experimental sessions, there was a spatially selective increased generation of grouped fast oscillations in that electroencephalogram lead. This locally increased generation of fast oscillations in cortex was associated with a widespread increase in synchrony of fast oscillations in thalamocortical networks, as demonstrated by cross-correlations between intracortical, corticothalamic, and intrathalamic field potentials. A three-session extinction period abolished the local increase in generation of grouped fast oscillations and reset the thalamocortical synchrony of fast oscillations to control values. A subsequent series of seven sessions with instrumental conditioning of fast oscillations in visual cortex (area 17) reproduced the results from area 4, with a spatially selective increased generation of grouped fast oscillations in the criterion lead, associated with a widespread increase in thalamocortical synchrony of fast oscillations. In addition to their presence during the conditioning sessions, the changes in synchrony of fast oscillations were expressed during periods of quiet waking, rapid-eye-movement sleep, and nonrapid-eye-movement sleep recorded during the first hour after the end of the conditioning. |
doi_str_mv | 10.1073/pnas.94.5.1985 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_94_5_1985_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41572</jstor_id><sourcerecordid>41572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-37b6cab684971af692be01f03871efd1ccb4613216ee21b2ee86eff88afedab03</originalsourceid><addsrcrecordid>eNqFkcFrFDEUxoModa1ePQjC4KHoYda8zCSTgBdZrC0Ue9GDp5DJJm3WmWRNMlr9682w67KK4CmH7_e9vO99CD0FvATcNa-3XqWlaJd0CYLTe2gBWEDNWoHvowXGpKt5S9qH6FFKG4yxoByfoBOBKeYCFujzpU85TqPxWQ3VKvi1yy5452-qYKtzlXL1kuC6yqGiuL74-aq6TtoNg5qpVDlfPDE7HfKtGtTodPXB5O8hfkmP0QOrhmSe7N9T9On83cfVRX11_f5y9faq1hSaXDddz7TqGW9FB8oyQXqDweKGd2DsGrTuWwYNAWYMgZ4Yw5mxlnNlzVr1uDlFb3Zzt1M_mrUuSaIa5Da6UcUfMign_1S8u5U34Zsk5Tqi2M_29hi-TiZlObqkTUnoTZiS7DinggP8FwTKBaOEF_DFX-AmTNGXG5QvoWEt6ViBljtIx5BSNPawMGA5FyvnYqVoJZVzscXw_DjmAd83ebTe7Duov_3STsOQzV0-GvRPsOjPdvom5RAPQAu0I80vwyDALg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364276</pqid></control><display><type>article</type><title>Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Amzica, Florin ; Neckelmann, Dag ; Steriade, Mircea</creator><creatorcontrib>Amzica, Florin ; Neckelmann, Dag ; Steriade, Mircea</creatorcontrib><description>Cats were instrumentally conditioned to generate grouped fast (20- to 50-Hz) oscillations in motor cortex (area 4). Over seven experimental sessions, there was a spatially selective increased generation of grouped fast oscillations in that electroencephalogram lead. This locally increased generation of fast oscillations in cortex was associated with a widespread increase in synchrony of fast oscillations in thalamocortical networks, as demonstrated by cross-correlations between intracortical, corticothalamic, and intrathalamic field potentials. A three-session extinction period abolished the local increase in generation of grouped fast oscillations and reset the thalamocortical synchrony of fast oscillations to control values. A subsequent series of seven sessions with instrumental conditioning of fast oscillations in visual cortex (area 17) reproduced the results from area 4, with a spatially selective increased generation of grouped fast oscillations in the criterion lead, associated with a widespread increase in thalamocortical synchrony of fast oscillations. In addition to their presence during the conditioning sessions, the changes in synchrony of fast oscillations were expressed during periods of quiet waking, rapid-eye-movement sleep, and nonrapid-eye-movement sleep recorded during the first hour after the end of the conditioning.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.5.1985</identifier><identifier>PMID: 9050891</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Behavior, Animal ; Biological Sciences ; Biology ; Cats ; Conditioning (Psychology) - physiology ; Electrodes, Implanted ; Electroencephalography ; Learning ; Light ; Light emitting diodes ; Medical research ; Mental stimulation ; Motor cortex ; Motor Cortex - physiology ; Movement ; Nerve Net - physiology ; Neurobiology ; Neurology ; Neurons ; Rapid eye movement sleep ; Sleep ; Sleep - physiology ; Sleep, REM - physiology ; Thalamus ; Thalamus - physiology ; Visual cortex ; Visual Cortex - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-03, Vol.94 (5), p.1985-1989</ispartof><rights>Copyright 1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Mar 4, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-37b6cab684971af692be01f03871efd1ccb4613216ee21b2ee86eff88afedab03</citedby><cites>FETCH-LOGICAL-c513t-37b6cab684971af692be01f03871efd1ccb4613216ee21b2ee86eff88afedab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41572$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41572$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9050891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amzica, Florin</creatorcontrib><creatorcontrib>Neckelmann, Dag</creatorcontrib><creatorcontrib>Steriade, Mircea</creatorcontrib><title>Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cats were instrumentally conditioned to generate grouped fast (20- to 50-Hz) oscillations in motor cortex (area 4). Over seven experimental sessions, there was a spatially selective increased generation of grouped fast oscillations in that electroencephalogram lead. This locally increased generation of fast oscillations in cortex was associated with a widespread increase in synchrony of fast oscillations in thalamocortical networks, as demonstrated by cross-correlations between intracortical, corticothalamic, and intrathalamic field potentials. A three-session extinction period abolished the local increase in generation of grouped fast oscillations and reset the thalamocortical synchrony of fast oscillations to control values. A subsequent series of seven sessions with instrumental conditioning of fast oscillations in visual cortex (area 17) reproduced the results from area 4, with a spatially selective increased generation of grouped fast oscillations in the criterion lead, associated with a widespread increase in thalamocortical synchrony of fast oscillations. In addition to their presence during the conditioning sessions, the changes in synchrony of fast oscillations were expressed during periods of quiet waking, rapid-eye-movement sleep, and nonrapid-eye-movement sleep recorded during the first hour after the end of the conditioning.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cats</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Electrodes, Implanted</subject><subject>Electroencephalography</subject><subject>Learning</subject><subject>Light</subject><subject>Light emitting diodes</subject><subject>Medical research</subject><subject>Mental stimulation</subject><subject>Motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>Movement</subject><subject>Nerve Net - physiology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Rapid eye movement sleep</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep, REM - physiology</subject><subject>Thalamus</subject><subject>Thalamus - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFrFDEUxoModa1ePQjC4KHoYda8zCSTgBdZrC0Ue9GDp5DJJm3WmWRNMlr9682w67KK4CmH7_e9vO99CD0FvATcNa-3XqWlaJd0CYLTe2gBWEDNWoHvowXGpKt5S9qH6FFKG4yxoByfoBOBKeYCFujzpU85TqPxWQ3VKvi1yy5452-qYKtzlXL1kuC6yqGiuL74-aq6TtoNg5qpVDlfPDE7HfKtGtTodPXB5O8hfkmP0QOrhmSe7N9T9On83cfVRX11_f5y9faq1hSaXDddz7TqGW9FB8oyQXqDweKGd2DsGrTuWwYNAWYMgZ4Yw5mxlnNlzVr1uDlFb3Zzt1M_mrUuSaIa5Da6UcUfMign_1S8u5U34Zsk5Tqi2M_29hi-TiZlObqkTUnoTZiS7DinggP8FwTKBaOEF_DFX-AmTNGXG5QvoWEt6ViBljtIx5BSNPawMGA5FyvnYqVoJZVzscXw_DjmAd83ebTe7Duov_3STsOQzV0-GvRPsOjPdvom5RAPQAu0I80vwyDALg</recordid><startdate>19970304</startdate><enddate>19970304</enddate><creator>Amzica, Florin</creator><creator>Neckelmann, Dag</creator><creator>Steriade, Mircea</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970304</creationdate><title>Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks</title><author>Amzica, Florin ; Neckelmann, Dag ; Steriade, Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-37b6cab684971af692be01f03871efd1ccb4613216ee21b2ee86eff88afedab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cats</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Electrodes, Implanted</topic><topic>Electroencephalography</topic><topic>Learning</topic><topic>Light</topic><topic>Light emitting diodes</topic><topic>Medical research</topic><topic>Mental stimulation</topic><topic>Motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>Movement</topic><topic>Nerve Net - physiology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Rapid eye movement sleep</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep, REM - physiology</topic><topic>Thalamus</topic><topic>Thalamus - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amzica, Florin</creatorcontrib><creatorcontrib>Neckelmann, Dag</creatorcontrib><creatorcontrib>Steriade, Mircea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amzica, Florin</au><au>Neckelmann, Dag</au><au>Steriade, Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-03-04</date><risdate>1997</risdate><volume>94</volume><issue>5</issue><spage>1985</spage><epage>1989</epage><pages>1985-1989</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cats were instrumentally conditioned to generate grouped fast (20- to 50-Hz) oscillations in motor cortex (area 4). Over seven experimental sessions, there was a spatially selective increased generation of grouped fast oscillations in that electroencephalogram lead. This locally increased generation of fast oscillations in cortex was associated with a widespread increase in synchrony of fast oscillations in thalamocortical networks, as demonstrated by cross-correlations between intracortical, corticothalamic, and intrathalamic field potentials. A three-session extinction period abolished the local increase in generation of grouped fast oscillations and reset the thalamocortical synchrony of fast oscillations to control values. A subsequent series of seven sessions with instrumental conditioning of fast oscillations in visual cortex (area 17) reproduced the results from area 4, with a spatially selective increased generation of grouped fast oscillations in the criterion lead, associated with a widespread increase in thalamocortical synchrony of fast oscillations. In addition to their presence during the conditioning sessions, the changes in synchrony of fast oscillations were expressed during periods of quiet waking, rapid-eye-movement sleep, and nonrapid-eye-movement sleep recorded during the first hour after the end of the conditioning.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9050891</pmid><doi>10.1073/pnas.94.5.1985</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-03, Vol.94 (5), p.1985-1989 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_94_5_1985_fulltext |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Behavior, Animal Biological Sciences Biology Cats Conditioning (Psychology) - physiology Electrodes, Implanted Electroencephalography Learning Light Light emitting diodes Medical research Mental stimulation Motor cortex Motor Cortex - physiology Movement Nerve Net - physiology Neurobiology Neurology Neurons Rapid eye movement sleep Sleep Sleep - physiology Sleep, REM - physiology Thalamus Thalamus - physiology Visual cortex Visual Cortex - physiology |
title | Instrumental Conditioning of Fast (20- to 50-Hz) Oscillations in Corticothalamic Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumental%20Conditioning%20of%20Fast%20(20-%20to%2050-Hz)%20Oscillations%20in%20Corticothalamic%20Networks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Amzica,%20Florin&rft.date=1997-03-04&rft.volume=94&rft.issue=5&rft.spage=1985&rft.epage=1989&rft.pages=1985-1989&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.5.1985&rft_dat=%3Cjstor_pnas_%3E41572%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364276&rft_id=info:pmid/9050891&rft_jstor_id=41572&rfr_iscdi=true |