Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C
The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, w...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-05, Vol.94 (10), p.5349-5354 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5354 |
---|---|
container_issue | 10 |
container_start_page | 5349 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Walter, Jochen Grünberg, Jürgen Capell, Anja Pesold, Brigitte Schindzielorz, Alice Citron, Martin Mendla, Klaus St George-Hyslop, Peter Multhaup, Gerd Selkoe, Dennis J. Haass, Christian |
description | The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity. |
doi_str_mv | 10.1073/pnas.94.10.5349 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_94_10_5349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42499</jstor_id><sourcerecordid>42499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</originalsourceid><addsrcrecordid>eNqFkc1v0zAYxi0EGmVwRkICWTuwUzp_JbYlLlWBgZgEEnC2EufN6iq1i51UG_zzOGtVDQ5w8uv3-b0f9oPQc0rmlEh-sfV1mmuRL_OSC_0AzSjRtKiEJg_RjBAmCyWYeIyepLQmhOhSkRN0oqnIWTJDv77EMEDobwdncY4tpOT8NQ4dHlaAF_3PFbgNRPzWJagTFIuUgnX1AG3GIYF3vfMFxZfgIeZ0wrXHzuOd2wX8dWzSMGVxFyK-G5WlTy4vDXj5FD3q6j7Bs8N5ir6_f_dt-aG4-nz5cbm4KqzgpS6UbgkD3ZaKksa2lghoG6vBlqypFG15XbUlzYGUlilRUamg5Q0reVMyayk_RW_2fbdjs4HWgs879WYb3aaOtybUzvypeLcy12FnmMj9c_nrQ3kMP0ZIg9m4ZKHvaw9hTEYqLZVU7L8grURVkZJk8OwvcB3G6PMfGEYop1LyaezFHrIxpBShOy5MiZm8N5P3RovpPnmfK17ef-eRP5id9VcHfSo8qvcbnP8TMN3Y9wPcDJl8sSfXaQjxiOYxWvPfAObNVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201317731</pqid></control><display><type>article</type><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</creator><creatorcontrib>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</creatorcontrib><description>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.10.5349</identifier><identifier>PMID: 9144240</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alkaline Phosphatase ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Alzheimers disease ; Amino Acid Sequence ; Antibodies ; Base Sequence ; Biological Sciences ; Cell Line ; Cell lines ; Conserved Sequence ; COS cells ; DNA Primers ; Exons ; Genetic mutation ; HEK293 cells ; Humans ; Kidney ; Medical research ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Molecular Sequence Data ; Phosphatases ; Phosphorylation ; Polymerase Chain Reaction ; Presenilin-1 ; Protein Kinase C - metabolism ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-05, Vol.94 (10), p.5349-5354</ispartof><rights>Copyright 1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences May 13, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</citedby><cites>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42499$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42499$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9144240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Jochen</creatorcontrib><creatorcontrib>Grünberg, Jürgen</creatorcontrib><creatorcontrib>Capell, Anja</creatorcontrib><creatorcontrib>Pesold, Brigitte</creatorcontrib><creatorcontrib>Schindzielorz, Alice</creatorcontrib><creatorcontrib>Citron, Martin</creatorcontrib><creatorcontrib>Mendla, Klaus</creatorcontrib><creatorcontrib>St George-Hyslop, Peter</creatorcontrib><creatorcontrib>Multhaup, Gerd</creatorcontrib><creatorcontrib>Selkoe, Dennis J.</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</description><subject>Alkaline Phosphatase</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Conserved Sequence</subject><subject>COS cells</subject><subject>DNA Primers</subject><subject>Exons</subject><subject>Genetic mutation</subject><subject>HEK293 cells</subject><subject>Humans</subject><subject>Kidney</subject><subject>Medical research</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phosphatases</subject><subject>Phosphorylation</subject><subject>Polymerase Chain Reaction</subject><subject>Presenilin-1</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v0zAYxi0EGmVwRkICWTuwUzp_JbYlLlWBgZgEEnC2EufN6iq1i51UG_zzOGtVDQ5w8uv3-b0f9oPQc0rmlEh-sfV1mmuRL_OSC_0AzSjRtKiEJg_RjBAmCyWYeIyepLQmhOhSkRN0oqnIWTJDv77EMEDobwdncY4tpOT8NQ4dHlaAF_3PFbgNRPzWJagTFIuUgnX1AG3GIYF3vfMFxZfgIeZ0wrXHzuOd2wX8dWzSMGVxFyK-G5WlTy4vDXj5FD3q6j7Bs8N5ir6_f_dt-aG4-nz5cbm4KqzgpS6UbgkD3ZaKksa2lghoG6vBlqypFG15XbUlzYGUlilRUamg5Q0reVMyayk_RW_2fbdjs4HWgs879WYb3aaOtybUzvypeLcy12FnmMj9c_nrQ3kMP0ZIg9m4ZKHvaw9hTEYqLZVU7L8grURVkZJk8OwvcB3G6PMfGEYop1LyaezFHrIxpBShOy5MiZm8N5P3RovpPnmfK17ef-eRP5id9VcHfSo8qvcbnP8TMN3Y9wPcDJl8sSfXaQjxiOYxWvPfAObNVA</recordid><startdate>19970513</startdate><enddate>19970513</enddate><creator>Walter, Jochen</creator><creator>Grünberg, Jürgen</creator><creator>Capell, Anja</creator><creator>Pesold, Brigitte</creator><creator>Schindzielorz, Alice</creator><creator>Citron, Martin</creator><creator>Mendla, Klaus</creator><creator>St George-Hyslop, Peter</creator><creator>Multhaup, Gerd</creator><creator>Selkoe, Dennis J.</creator><creator>Haass, Christian</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970513</creationdate><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><author>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alkaline Phosphatase</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Conserved Sequence</topic><topic>COS cells</topic><topic>DNA Primers</topic><topic>Exons</topic><topic>Genetic mutation</topic><topic>HEK293 cells</topic><topic>Humans</topic><topic>Kidney</topic><topic>Medical research</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phosphatases</topic><topic>Phosphorylation</topic><topic>Polymerase Chain Reaction</topic><topic>Presenilin-1</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Jochen</creatorcontrib><creatorcontrib>Grünberg, Jürgen</creatorcontrib><creatorcontrib>Capell, Anja</creatorcontrib><creatorcontrib>Pesold, Brigitte</creatorcontrib><creatorcontrib>Schindzielorz, Alice</creatorcontrib><creatorcontrib>Citron, Martin</creatorcontrib><creatorcontrib>Mendla, Klaus</creatorcontrib><creatorcontrib>St George-Hyslop, Peter</creatorcontrib><creatorcontrib>Multhaup, Gerd</creatorcontrib><creatorcontrib>Selkoe, Dennis J.</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Jochen</au><au>Grünberg, Jürgen</au><au>Capell, Anja</au><au>Pesold, Brigitte</au><au>Schindzielorz, Alice</au><au>Citron, Martin</au><au>Mendla, Klaus</au><au>St George-Hyslop, Peter</au><au>Multhaup, Gerd</au><au>Selkoe, Dennis J.</au><au>Haass, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-05-13</date><risdate>1997</risdate><volume>94</volume><issue>10</issue><spage>5349</spage><epage>5354</epage><pages>5349-5354</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9144240</pmid><doi>10.1073/pnas.94.10.5349</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-05, Vol.94 (10), p.5349-5354 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_94_10_5349 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alkaline Phosphatase Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer's disease Alzheimers disease Amino Acid Sequence Antibodies Base Sequence Biological Sciences Cell Line Cell lines Conserved Sequence COS cells DNA Primers Exons Genetic mutation HEK293 cells Humans Kidney Medical research Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Molecular Sequence Data Phosphatases Phosphorylation Polymerase Chain Reaction Presenilin-1 Protein Kinase C - metabolism Protein Processing, Post-Translational Protein Structure, Secondary Proteins Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Recombinant Proteins - metabolism Sequence Homology, Amino Acid Substrate Specificity Transfection |
title | Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Processing%20of%20the%20Alzheimer%20Disease-Associated%20Presenilin-1%20Generates%20an%20in%20vivo%20Substrate%20for%20Protein%20Kinase%20C&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Walter,%20Jochen&rft.date=1997-05-13&rft.volume=94&rft.issue=10&rft.spage=5349&rft.epage=5354&rft.pages=5349-5354&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.10.5349&rft_dat=%3Cjstor_pnas_%3E42499%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201317731&rft_id=info:pmid/9144240&rft_jstor_id=42499&rfr_iscdi=true |