Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-05, Vol.94 (10), p.5349-5354
Hauptverfasser: Walter, Jochen, Grünberg, Jürgen, Capell, Anja, Pesold, Brigitte, Schindzielorz, Alice, Citron, Martin, Mendla, Klaus, St George-Hyslop, Peter, Multhaup, Gerd, Selkoe, Dennis J., Haass, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5354
container_issue 10
container_start_page 5349
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Walter, Jochen
Grünberg, Jürgen
Capell, Anja
Pesold, Brigitte
Schindzielorz, Alice
Citron, Martin
Mendla, Klaus
St George-Hyslop, Peter
Multhaup, Gerd
Selkoe, Dennis J.
Haass, Christian
description The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.
doi_str_mv 10.1073/pnas.94.10.5349
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_94_10_5349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42499</jstor_id><sourcerecordid>42499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</originalsourceid><addsrcrecordid>eNqFkc1v0zAYxi0EGmVwRkICWTuwUzp_JbYlLlWBgZgEEnC2EufN6iq1i51UG_zzOGtVDQ5w8uv3-b0f9oPQc0rmlEh-sfV1mmuRL_OSC_0AzSjRtKiEJg_RjBAmCyWYeIyepLQmhOhSkRN0oqnIWTJDv77EMEDobwdncY4tpOT8NQ4dHlaAF_3PFbgNRPzWJagTFIuUgnX1AG3GIYF3vfMFxZfgIeZ0wrXHzuOd2wX8dWzSMGVxFyK-G5WlTy4vDXj5FD3q6j7Bs8N5ir6_f_dt-aG4-nz5cbm4KqzgpS6UbgkD3ZaKksa2lghoG6vBlqypFG15XbUlzYGUlilRUamg5Q0reVMyayk_RW_2fbdjs4HWgs879WYb3aaOtybUzvypeLcy12FnmMj9c_nrQ3kMP0ZIg9m4ZKHvaw9hTEYqLZVU7L8grURVkZJk8OwvcB3G6PMfGEYop1LyaezFHrIxpBShOy5MiZm8N5P3RovpPnmfK17ef-eRP5id9VcHfSo8qvcbnP8TMN3Y9wPcDJl8sSfXaQjxiOYxWvPfAObNVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201317731</pqid></control><display><type>article</type><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</creator><creatorcontrib>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</creatorcontrib><description>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.10.5349</identifier><identifier>PMID: 9144240</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alkaline Phosphatase ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Alzheimers disease ; Amino Acid Sequence ; Antibodies ; Base Sequence ; Biological Sciences ; Cell Line ; Cell lines ; Conserved Sequence ; COS cells ; DNA Primers ; Exons ; Genetic mutation ; HEK293 cells ; Humans ; Kidney ; Medical research ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Molecular Sequence Data ; Phosphatases ; Phosphorylation ; Polymerase Chain Reaction ; Presenilin-1 ; Protein Kinase C - metabolism ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-05, Vol.94 (10), p.5349-5354</ispartof><rights>Copyright 1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences May 13, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</citedby><cites>FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42499$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42499$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9144240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Jochen</creatorcontrib><creatorcontrib>Grünberg, Jürgen</creatorcontrib><creatorcontrib>Capell, Anja</creatorcontrib><creatorcontrib>Pesold, Brigitte</creatorcontrib><creatorcontrib>Schindzielorz, Alice</creatorcontrib><creatorcontrib>Citron, Martin</creatorcontrib><creatorcontrib>Mendla, Klaus</creatorcontrib><creatorcontrib>St George-Hyslop, Peter</creatorcontrib><creatorcontrib>Multhaup, Gerd</creatorcontrib><creatorcontrib>Selkoe, Dennis J.</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</description><subject>Alkaline Phosphatase</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Conserved Sequence</subject><subject>COS cells</subject><subject>DNA Primers</subject><subject>Exons</subject><subject>Genetic mutation</subject><subject>HEK293 cells</subject><subject>Humans</subject><subject>Kidney</subject><subject>Medical research</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phosphatases</subject><subject>Phosphorylation</subject><subject>Polymerase Chain Reaction</subject><subject>Presenilin-1</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v0zAYxi0EGmVwRkICWTuwUzp_JbYlLlWBgZgEEnC2EufN6iq1i51UG_zzOGtVDQ5w8uv3-b0f9oPQc0rmlEh-sfV1mmuRL_OSC_0AzSjRtKiEJg_RjBAmCyWYeIyepLQmhOhSkRN0oqnIWTJDv77EMEDobwdncY4tpOT8NQ4dHlaAF_3PFbgNRPzWJagTFIuUgnX1AG3GIYF3vfMFxZfgIeZ0wrXHzuOd2wX8dWzSMGVxFyK-G5WlTy4vDXj5FD3q6j7Bs8N5ir6_f_dt-aG4-nz5cbm4KqzgpS6UbgkD3ZaKksa2lghoG6vBlqypFG15XbUlzYGUlilRUamg5Q0reVMyayk_RW_2fbdjs4HWgs879WYb3aaOtybUzvypeLcy12FnmMj9c_nrQ3kMP0ZIg9m4ZKHvaw9hTEYqLZVU7L8grURVkZJk8OwvcB3G6PMfGEYop1LyaezFHrIxpBShOy5MiZm8N5P3RovpPnmfK17ef-eRP5id9VcHfSo8qvcbnP8TMN3Y9wPcDJl8sSfXaQjxiOYxWvPfAObNVA</recordid><startdate>19970513</startdate><enddate>19970513</enddate><creator>Walter, Jochen</creator><creator>Grünberg, Jürgen</creator><creator>Capell, Anja</creator><creator>Pesold, Brigitte</creator><creator>Schindzielorz, Alice</creator><creator>Citron, Martin</creator><creator>Mendla, Klaus</creator><creator>St George-Hyslop, Peter</creator><creator>Multhaup, Gerd</creator><creator>Selkoe, Dennis J.</creator><creator>Haass, Christian</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970513</creationdate><title>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</title><author>Walter, Jochen ; Grünberg, Jürgen ; Capell, Anja ; Pesold, Brigitte ; Schindzielorz, Alice ; Citron, Martin ; Mendla, Klaus ; St George-Hyslop, Peter ; Multhaup, Gerd ; Selkoe, Dennis J. ; Haass, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4359-89d02e9d5810bcdc04edbc9ec52b681d3a6d5181d77c2846178ed3b253b52cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alkaline Phosphatase</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Conserved Sequence</topic><topic>COS cells</topic><topic>DNA Primers</topic><topic>Exons</topic><topic>Genetic mutation</topic><topic>HEK293 cells</topic><topic>Humans</topic><topic>Kidney</topic><topic>Medical research</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phosphatases</topic><topic>Phosphorylation</topic><topic>Polymerase Chain Reaction</topic><topic>Presenilin-1</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Jochen</creatorcontrib><creatorcontrib>Grünberg, Jürgen</creatorcontrib><creatorcontrib>Capell, Anja</creatorcontrib><creatorcontrib>Pesold, Brigitte</creatorcontrib><creatorcontrib>Schindzielorz, Alice</creatorcontrib><creatorcontrib>Citron, Martin</creatorcontrib><creatorcontrib>Mendla, Klaus</creatorcontrib><creatorcontrib>St George-Hyslop, Peter</creatorcontrib><creatorcontrib>Multhaup, Gerd</creatorcontrib><creatorcontrib>Selkoe, Dennis J.</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Jochen</au><au>Grünberg, Jürgen</au><au>Capell, Anja</au><au>Pesold, Brigitte</au><au>Schindzielorz, Alice</au><au>Citron, Martin</au><au>Mendla, Klaus</au><au>St George-Hyslop, Peter</au><au>Multhaup, Gerd</au><au>Selkoe, Dennis J.</au><au>Haass, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-05-13</date><risdate>1997</risdate><volume>94</volume><issue>10</issue><spage>5349</spage><epage>5354</epage><pages>5349-5354</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈ 20-kDa C-terminal fragments (CTF) and ≈ 30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181-190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈ 20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181-190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9144240</pmid><doi>10.1073/pnas.94.10.5349</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-05, Vol.94 (10), p.5349-5354
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_94_10_5349
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alkaline Phosphatase
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer's disease
Alzheimers disease
Amino Acid Sequence
Antibodies
Base Sequence
Biological Sciences
Cell Line
Cell lines
Conserved Sequence
COS cells
DNA Primers
Exons
Genetic mutation
HEK293 cells
Humans
Kidney
Medical research
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Molecular Sequence Data
Phosphatases
Phosphorylation
Polymerase Chain Reaction
Presenilin-1
Protein Kinase C - metabolism
Protein Processing, Post-Translational
Protein Structure, Secondary
Proteins
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Substrate Specificity
Transfection
title Proteolytic Processing of the Alzheimer Disease-Associated Presenilin-1 Generates an in vivo Substrate for Protein Kinase C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Processing%20of%20the%20Alzheimer%20Disease-Associated%20Presenilin-1%20Generates%20an%20in%20vivo%20Substrate%20for%20Protein%20Kinase%20C&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Walter,%20Jochen&rft.date=1997-05-13&rft.volume=94&rft.issue=10&rft.spage=5349&rft.epage=5354&rft.pages=5349-5354&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.10.5349&rft_dat=%3Cjstor_pnas_%3E42499%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201317731&rft_id=info:pmid/9144240&rft_jstor_id=42499&rfr_iscdi=true