The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli
For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA re...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1996-10, Vol.93 (22), p.12183-12188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12188 |
---|---|
container_issue | 22 |
container_start_page | 12183 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Semenkov, Yuri P. Rodnina, Marina V. Wintermeyer, Wolfgang |
description | For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative ``allosteric three-site model'' [Nierhaus, K. H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg$^{2+}$ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with amino-acyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome. |
doi_str_mv | 10.1073/pnas.93.22.12183 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_93_22_12183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40590</jstor_id><sourcerecordid>40590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-8f6e41276dd90b38f2f59644c647cc64e7b27774538c05da45124f8681f298ac3</originalsourceid><addsrcrecordid>eNqFkcuLUzEYxS-ijJ3RvQhimIW4uTXPmwRmM9b6gBHBqbjMpGkyTclNanI7OOAfb2prcVzoJoGc3_keOU3zBMExgpy8WkddxpKMMR4jjAS514wQlKjtqIT3mxGEmLeCYvqwOS5lBSGUTMCj5khIiBijo-bHbGnB1dV5CKkMNnsDZstsbXvpBws-poUNpyA5MA0pXuvBpwgmOsY0gNcWTFJ0Pvd2AXwEGny1IbRvrPOxvnz281RSb8Hlba3bA5dTD6bFLLc9ll4Dk4J_1DxwOhT7eH-fNF_eTmeT9-3Fp3cfJucXrWGYDK1wnaUI826xkHBOhMOOyY5S01Fu6mH5HHPOKSPCQLbQlCFMnegEclgKbchJc7aru97M67jGxiHroNbZ9zrfqqS9uqtEv1TX6UYRXvtU-4u9PadvG1sG1fti6rY62rQpigsquw6R_4KIcSYQ3YKnf4GrtMmx_oHCEBEkOIQVgjvI5FRKtu4wMIJqm77apq8kURirX-lXy7M_Fz0Y9nFX_fle3zp_q3crvPw3odwmhMF-Hyr6dIeuypDygaWQSUh-AsH6zHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201318700</pqid></control><display><type>article</type><title>The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Semenkov, Yuri P. ; Rodnina, Marina V. ; Wintermeyer, Wolfgang</creator><creatorcontrib>Semenkov, Yuri P. ; Rodnina, Marina V. ; Wintermeyer, Wolfgang</creatorcontrib><description>For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative ``allosteric three-site model'' [Nierhaus, K. H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg$^{2+}$ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with amino-acyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.22.12183</identifier><identifier>PMID: 8901554</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Allosteric Regulation ; Amino acids ; Anticodon ; Bacteria ; Biochemistry ; Cellulose nitrate ; E coli ; Escherichia coli ; Genes ; Kinetics ; Magnesium - metabolism ; Messenger RNA ; Models, Molecular ; Peptide Chain Elongation, Translational ; Peptide Elongation Factor G ; Peptide elongation factors ; Peptide Elongation Factors - metabolism ; Polyamines ; Polyamines - pharmacology ; Protein Biosynthesis ; Protein Processing, Post-Translational ; Ribonucleic acid ; Ribosomes ; Ribosomes - ultrastructure ; RNA ; RNA, Transfer, Amino Acyl - metabolism ; RNA, Transfer, Met - metabolism ; Transfer RNA ; Translocation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-10, Vol.93 (22), p.12183-12188</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Oct 29, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-8f6e41276dd90b38f2f59644c647cc64e7b27774538c05da45124f8681f298ac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40590$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40590$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8901554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semenkov, Yuri P.</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><creatorcontrib>Wintermeyer, Wolfgang</creatorcontrib><title>The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative ``allosteric three-site model'' [Nierhaus, K. H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg$^{2+}$ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with amino-acyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.</description><subject>Allosteric Regulation</subject><subject>Amino acids</subject><subject>Anticodon</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Cellulose nitrate</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Genes</subject><subject>Kinetics</subject><subject>Magnesium - metabolism</subject><subject>Messenger RNA</subject><subject>Models, Molecular</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Elongation Factor G</subject><subject>Peptide elongation factors</subject><subject>Peptide Elongation Factors - metabolism</subject><subject>Polyamines</subject><subject>Polyamines - pharmacology</subject><subject>Protein Biosynthesis</subject><subject>Protein Processing, Post-Translational</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>RNA, Transfer, Met - metabolism</subject><subject>Transfer RNA</subject><subject>Translocation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuLUzEYxS-ijJ3RvQhimIW4uTXPmwRmM9b6gBHBqbjMpGkyTclNanI7OOAfb2prcVzoJoGc3_keOU3zBMExgpy8WkddxpKMMR4jjAS514wQlKjtqIT3mxGEmLeCYvqwOS5lBSGUTMCj5khIiBijo-bHbGnB1dV5CKkMNnsDZstsbXvpBws-poUNpyA5MA0pXuvBpwgmOsY0gNcWTFJ0Pvd2AXwEGny1IbRvrPOxvnz281RSb8Hlba3bA5dTD6bFLLc9ll4Dk4J_1DxwOhT7eH-fNF_eTmeT9-3Fp3cfJucXrWGYDK1wnaUI826xkHBOhMOOyY5S01Fu6mH5HHPOKSPCQLbQlCFMnegEclgKbchJc7aru97M67jGxiHroNbZ9zrfqqS9uqtEv1TX6UYRXvtU-4u9PadvG1sG1fti6rY62rQpigsquw6R_4KIcSYQ3YKnf4GrtMmx_oHCEBEkOIQVgjvI5FRKtu4wMIJqm77apq8kURirX-lXy7M_Fz0Y9nFX_fle3zp_q3crvPw3odwmhMF-Hyr6dIeuypDygaWQSUh-AsH6zHc</recordid><startdate>19961029</startdate><enddate>19961029</enddate><creator>Semenkov, Yuri P.</creator><creator>Rodnina, Marina V.</creator><creator>Wintermeyer, Wolfgang</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961029</creationdate><title>The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli</title><author>Semenkov, Yuri P. ; Rodnina, Marina V. ; Wintermeyer, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-8f6e41276dd90b38f2f59644c647cc64e7b27774538c05da45124f8681f298ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Allosteric Regulation</topic><topic>Amino acids</topic><topic>Anticodon</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Cellulose nitrate</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Genes</topic><topic>Kinetics</topic><topic>Magnesium - metabolism</topic><topic>Messenger RNA</topic><topic>Models, Molecular</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Elongation Factor G</topic><topic>Peptide elongation factors</topic><topic>Peptide Elongation Factors - metabolism</topic><topic>Polyamines</topic><topic>Polyamines - pharmacology</topic><topic>Protein Biosynthesis</topic><topic>Protein Processing, Post-Translational</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>RNA, Transfer, Met - metabolism</topic><topic>Transfer RNA</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenkov, Yuri P.</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><creatorcontrib>Wintermeyer, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenkov, Yuri P.</au><au>Rodnina, Marina V.</au><au>Wintermeyer, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-10-29</date><risdate>1996</risdate><volume>93</volume><issue>22</issue><spage>12183</spage><epage>12188</epage><pages>12183-12188</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative ``allosteric three-site model'' [Nierhaus, K. H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg$^{2+}$ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with amino-acyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8901554</pmid><doi>10.1073/pnas.93.22.12183</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-10, Vol.93 (22), p.12183-12188 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_93_22_12183 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation Amino acids Anticodon Bacteria Biochemistry Cellulose nitrate E coli Escherichia coli Genes Kinetics Magnesium - metabolism Messenger RNA Models, Molecular Peptide Chain Elongation, Translational Peptide Elongation Factor G Peptide elongation factors Peptide Elongation Factors - metabolism Polyamines Polyamines - pharmacology Protein Biosynthesis Protein Processing, Post-Translational Ribonucleic acid Ribosomes Ribosomes - ultrastructure RNA RNA, Transfer, Amino Acyl - metabolism RNA, Transfer, Met - metabolism Transfer RNA Translocation |
title | The ``Allosteric Three-Site Model" of Elongation Cannot Be Confirmed in a Well-Defined Ribosome System from Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%60%60Allosteric%20Three-Site%20Model%22%20of%20Elongation%20Cannot%20Be%20Confirmed%20in%20a%20Well-Defined%20Ribosome%20System%20from%20Escherichia%20coli&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Semenkov,%20Yuri%20P.&rft.date=1996-10-29&rft.volume=93&rft.issue=22&rft.spage=12183&rft.epage=12188&rft.pages=12183-12188&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.22.12183&rft_dat=%3Cjstor_pnas_%3E40590%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201318700&rft_id=info:pmid/8901554&rft_jstor_id=40590&rfr_iscdi=true |