Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture

The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-05, Vol.93 (10), p.5146-5150
Hauptverfasser: Parshad, Ram, Sanford, Katherine K., Price, Floyd M., Melnick, Lynn K., Nee, Linda E., Schapiro, Mark B., Tarone, Robert E., Robbins, Jay H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5150
container_issue 10
container_start_page 5146
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Parshad, Ram
Sanford, Katherine K.
Price, Floyd M.
Melnick, Lynn K.
Nee, Linda E.
Schapiro, Mark B.
Tarone, Robert E.
Robbins, Jay H.
description The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either β -cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.
doi_str_mv 10.1073/pnas.93.10.5146
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_93_10_5146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>38919</jstor_id><sourcerecordid>38919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ce14b50933b2515672838417a3b11fa03618d647bab85f2ddc512b4db113f5ee3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EKkNhjYQEiljAKlM_E1tiUwYKlUawKWvLSZyJByee-oGAX4-jCSPKAlbW9fnOte89ADxFcI1gTS4OkwprQXKxZohW98AKQYHKigp4H6wgxHXJKaYPwaMQ9hBCwTg8A2e8ooRRsgL-yibndWj1FIut2Q2xvJ661Oqu2AzejSqarnjrtfoaincmRDPtkglDcWl_DtqM2s-3WgVdbLS1oeizp_jk_KjscmOm4saEkDKRbExePwYPemWDfrKc5-DL1fubzcdy-_nD9eZyW7YM8Vi2GtGGQUFIgxliVY054RTVijQI9QqSCvGuonWjGs563HXZhhvaZZX0TGtyDt4c-x5SM-puntArKw_ejMr_kE4ZeVeZzCB37pskgmKc7a8Wu3e3SYcoR5PXZK2atEtB1hzCihDxXxAxXnGBYAZf_gXuXfJT3oHEEGEBRT0_e3GEWu9C8Lo_fRhBOUcu58ilIHM9R54dz_-c88QvGWf9xaLPxt_qnQav_wnIPlkb9feYyWdHch-i8yeU5PEE-QVQmMm9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201290972</pqid></control><display><type>article</type><title>Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Parshad, Ram ; Sanford, Katherine K. ; Price, Floyd M. ; Melnick, Lynn K. ; Nee, Linda E. ; Schapiro, Mark B. ; Tarone, Robert E. ; Robbins, Jay H.</creator><creatorcontrib>Parshad, Ram ; Sanford, Katherine K. ; Price, Floyd M. ; Melnick, Lynn K. ; Nee, Linda E. ; Schapiro, Mark B. ; Tarone, Robert E. ; Robbins, Jay H.</creatorcontrib><description>The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either β -cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.10.5146</identifier><identifier>PMID: 8643543</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alzheimer Disease - diagnosis ; Alzheimer Disease - genetics ; Alzheimer's disease ; Caffeine - pharmacology ; Case-Control Studies ; Cell lines ; Cells, Cultured ; Chromatids - drug effects ; Chromatids - radiation effects ; Cytarabine - pharmacology ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - radiation effects ; DNA Damage ; DNA repair ; DNA Repair - drug effects ; Down Syndrome - genetics ; Downs syndrome ; Female ; Fibroblasts ; Flasks ; Free radicals ; G1 Phase ; G2 Phase ; Genetics ; Humans ; Lesions ; Light - adverse effects ; Lymphocytes ; Male ; Medical screening ; Metaphase ; Neurons ; Ultraviolet Rays - adverse effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-05, Vol.93 (10), p.5146-5150</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences May 14, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ce14b50933b2515672838417a3b11fa03618d647bab85f2ddc512b4db113f5ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/38919$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/38919$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8643543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parshad, Ram</creatorcontrib><creatorcontrib>Sanford, Katherine K.</creatorcontrib><creatorcontrib>Price, Floyd M.</creatorcontrib><creatorcontrib>Melnick, Lynn K.</creatorcontrib><creatorcontrib>Nee, Linda E.</creatorcontrib><creatorcontrib>Schapiro, Mark B.</creatorcontrib><creatorcontrib>Tarone, Robert E.</creatorcontrib><creatorcontrib>Robbins, Jay H.</creatorcontrib><title>Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either β -cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.</description><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer's disease</subject><subject>Caffeine - pharmacology</subject><subject>Case-Control Studies</subject><subject>Cell lines</subject><subject>Cells, Cultured</subject><subject>Chromatids - drug effects</subject><subject>Chromatids - radiation effects</subject><subject>Cytarabine - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - radiation effects</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>Down Syndrome - genetics</subject><subject>Downs syndrome</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Flasks</subject><subject>Free radicals</subject><subject>G1 Phase</subject><subject>G2 Phase</subject><subject>Genetics</subject><subject>Humans</subject><subject>Lesions</subject><subject>Light - adverse effects</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>Medical screening</subject><subject>Metaphase</subject><subject>Neurons</subject><subject>Ultraviolet Rays - adverse effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EKkNhjYQEiljAKlM_E1tiUwYKlUawKWvLSZyJByee-oGAX4-jCSPKAlbW9fnOte89ADxFcI1gTS4OkwprQXKxZohW98AKQYHKigp4H6wgxHXJKaYPwaMQ9hBCwTg8A2e8ooRRsgL-yibndWj1FIut2Q2xvJ661Oqu2AzejSqarnjrtfoaincmRDPtkglDcWl_DtqM2s-3WgVdbLS1oeizp_jk_KjscmOm4saEkDKRbExePwYPemWDfrKc5-DL1fubzcdy-_nD9eZyW7YM8Vi2GtGGQUFIgxliVY054RTVijQI9QqSCvGuonWjGs563HXZhhvaZZX0TGtyDt4c-x5SM-puntArKw_ejMr_kE4ZeVeZzCB37pskgmKc7a8Wu3e3SYcoR5PXZK2atEtB1hzCihDxXxAxXnGBYAZf_gXuXfJT3oHEEGEBRT0_e3GEWu9C8Lo_fRhBOUcu58ilIHM9R54dz_-c88QvGWf9xaLPxt_qnQav_wnIPlkb9feYyWdHch-i8yeU5PEE-QVQmMm9</recordid><startdate>19960514</startdate><enddate>19960514</enddate><creator>Parshad, Ram</creator><creator>Sanford, Katherine K.</creator><creator>Price, Floyd M.</creator><creator>Melnick, Lynn K.</creator><creator>Nee, Linda E.</creator><creator>Schapiro, Mark B.</creator><creator>Tarone, Robert E.</creator><creator>Robbins, Jay H.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960514</creationdate><title>Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture</title><author>Parshad, Ram ; Sanford, Katherine K. ; Price, Floyd M. ; Melnick, Lynn K. ; Nee, Linda E. ; Schapiro, Mark B. ; Tarone, Robert E. ; Robbins, Jay H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ce14b50933b2515672838417a3b11fa03618d647bab85f2ddc512b4db113f5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer's disease</topic><topic>Caffeine - pharmacology</topic><topic>Case-Control Studies</topic><topic>Cell lines</topic><topic>Cells, Cultured</topic><topic>Chromatids - drug effects</topic><topic>Chromatids - radiation effects</topic><topic>Cytarabine - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - radiation effects</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>Down Syndrome - genetics</topic><topic>Downs syndrome</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Flasks</topic><topic>Free radicals</topic><topic>G1 Phase</topic><topic>G2 Phase</topic><topic>Genetics</topic><topic>Humans</topic><topic>Lesions</topic><topic>Light - adverse effects</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>Medical screening</topic><topic>Metaphase</topic><topic>Neurons</topic><topic>Ultraviolet Rays - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parshad, Ram</creatorcontrib><creatorcontrib>Sanford, Katherine K.</creatorcontrib><creatorcontrib>Price, Floyd M.</creatorcontrib><creatorcontrib>Melnick, Lynn K.</creatorcontrib><creatorcontrib>Nee, Linda E.</creatorcontrib><creatorcontrib>Schapiro, Mark B.</creatorcontrib><creatorcontrib>Tarone, Robert E.</creatorcontrib><creatorcontrib>Robbins, Jay H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parshad, Ram</au><au>Sanford, Katherine K.</au><au>Price, Floyd M.</au><au>Melnick, Lynn K.</au><au>Nee, Linda E.</au><au>Schapiro, Mark B.</au><au>Tarone, Robert E.</au><au>Robbins, Jay H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-05-14</date><risdate>1996</risdate><volume>93</volume><issue>10</issue><spage>5146</spage><epage>5150</epage><pages>5146-5150</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either β -cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8643543</pmid><doi>10.1073/pnas.93.10.5146</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-05, Vol.93 (10), p.5146-5150
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_93_10_5146
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alzheimer Disease - diagnosis
Alzheimer Disease - genetics
Alzheimer's disease
Caffeine - pharmacology
Case-Control Studies
Cell lines
Cells, Cultured
Chromatids - drug effects
Chromatids - radiation effects
Cytarabine - pharmacology
Deoxyribonucleic acid
DNA
DNA - genetics
DNA - radiation effects
DNA Damage
DNA repair
DNA Repair - drug effects
Down Syndrome - genetics
Downs syndrome
Female
Fibroblasts
Flasks
Free radicals
G1 Phase
G2 Phase
Genetics
Humans
Lesions
Light - adverse effects
Lymphocytes
Male
Medical screening
Metaphase
Neurons
Ultraviolet Rays - adverse effects
title Fluorescent Light-Induced Chromatid Breaks Distinguish Alzheimer Disease Cells from Normal Cells in Tissue Culture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Light-Induced%20Chromatid%20Breaks%20Distinguish%20Alzheimer%20Disease%20Cells%20from%20Normal%20Cells%20in%20Tissue%20Culture&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Parshad,%20Ram&rft.date=1996-05-14&rft.volume=93&rft.issue=10&rft.spage=5146&rft.epage=5150&rft.pages=5146-5150&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.10.5146&rft_dat=%3Cjstor_pnas_%3E38919%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201290972&rft_id=info:pmid/8643543&rft_jstor_id=38919&rfr_iscdi=true