Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria
To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1995-07, Vol.92 (14), p.6625-6629 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6629 |
---|---|
container_issue | 14 |
container_start_page | 6625 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 92 |
creator | Sherman, D R Sabo, P J Hickey, M J Arain, T M Mahairas, G G Yuan, Y Barry, 3rd, C E Stover, C K |
description | To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria. |
doi_str_mv | 10.1073/pnas.92.14.6625 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_92_14_6625_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2367896</jstor_id><sourcerecordid>2367896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</originalsourceid><addsrcrecordid>eNp9kcuLFDEQxoMo67h69qLSeNBTz-b9AC-yPmFlZVfPIZ2kdzL0dNokvez892aYcXwchIKi-H5fUcUHwFMElwgKcjaNJi8VXiK65Byze2CBoEItpwreBwsIsWglxfQheJTzGkKomIQn4ERwSCGlC3D1LuTJJFN8c-XzFMfsc1Nic3kXnCnh1jfXJfmcmzA212ZKcVptS7CNGV3z1ZRVvPFjHb9sbeyMLT4F8xg86M2Q_ZNDPwXfP7z_dv6pvbj8-Pn87UVrmeSlVdw4KJ2TWDDnMBQ9q8UJ6VAvOqwoQcRZ0hPPWSc56TztoWC-d8RYSzg5BW_2e6e523hn_ViSGfSUwsakrY4m6L-VMaz0TbzVFDGBqv3VwZ7ij9nnojchWz8MZvRxzhpxCQVkrIIv_wHXcU5jfU1jiLBSgskKne0hm2LOyffHOxDUu6T0LimtsEZU75Kqjud_nn_kD9FU_fVB3xl_qb8X6H4ehuLvSiVf_JeswLM9sM4lpiOBCRdScfIT7rOyYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201299758</pqid></control><display><type>article</type><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</creator><creatorcontrib>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</creatorcontrib><description>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.92.14.6625</identifier><identifier>PMID: 7604044</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Animals ; Autoradiography ; Bacteria ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Base Sequence ; Biology ; Cattle ; Disease ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA-Binding Proteins ; Gene Expression ; Genes ; Genes, Bacterial ; Genetic loci ; Gram negative bacteria ; Granuloma - microbiology ; Humans ; Hydrogen ; Macrophages - microbiology ; Methionine - metabolism ; Molecular Sequence Data ; Mycobacterium - genetics ; Mycobacterium - pathogenicity ; Mycobacterium - physiology ; Mycobacterium avium - genetics ; Mycobacterium avium - pathogenicity ; Mycobacterium avium - physiology ; Mycobacterium bovis - genetics ; Mycobacterium bovis - pathogenicity ; Mycobacterium bovis - physiology ; Mycobacterium smegmatis ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - pathogenicity ; Mycobacterium tuberculosis - physiology ; Oligodeoxyribonucleotides ; Open reading frames ; Oxidative Stress ; Oxidoreductases - biosynthesis ; Oxidoreductases - genetics ; Oxygen ; Peroxidases ; Peroxides ; Peroxiredoxins ; Proteins ; Repressor Proteins - genetics ; Sequence Homology, Amino Acid ; Species Specificity ; Sulfur Radioisotopes ; Toxicity ; Transcription Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1995-07, Vol.92 (14), p.6625-6629</ispartof><rights>Copyright 1995 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 3, 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/92/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2367896$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2367896$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7604044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherman, D R</creatorcontrib><creatorcontrib>Sabo, P J</creatorcontrib><creatorcontrib>Hickey, M J</creatorcontrib><creatorcontrib>Arain, T M</creatorcontrib><creatorcontrib>Mahairas, G G</creatorcontrib><creatorcontrib>Yuan, Y</creatorcontrib><creatorcontrib>Barry, 3rd, C E</creatorcontrib><creatorcontrib>Stover, C K</creatorcontrib><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Bacteria</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Cattle</subject><subject>Disease</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic loci</subject><subject>Gram negative bacteria</subject><subject>Granuloma - microbiology</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Macrophages - microbiology</subject><subject>Methionine - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mycobacterium - genetics</subject><subject>Mycobacterium - pathogenicity</subject><subject>Mycobacterium - physiology</subject><subject>Mycobacterium avium - genetics</subject><subject>Mycobacterium avium - pathogenicity</subject><subject>Mycobacterium avium - physiology</subject><subject>Mycobacterium bovis - genetics</subject><subject>Mycobacterium bovis - pathogenicity</subject><subject>Mycobacterium bovis - physiology</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Oligodeoxyribonucleotides</subject><subject>Open reading frames</subject><subject>Oxidative Stress</subject><subject>Oxidoreductases - biosynthesis</subject><subject>Oxidoreductases - genetics</subject><subject>Oxygen</subject><subject>Peroxidases</subject><subject>Peroxides</subject><subject>Peroxiredoxins</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>Sulfur Radioisotopes</subject><subject>Toxicity</subject><subject>Transcription Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcuLFDEQxoMo67h69qLSeNBTz-b9AC-yPmFlZVfPIZ2kdzL0dNokvez892aYcXwchIKi-H5fUcUHwFMElwgKcjaNJi8VXiK65Byze2CBoEItpwreBwsIsWglxfQheJTzGkKomIQn4ERwSCGlC3D1LuTJJFN8c-XzFMfsc1Nic3kXnCnh1jfXJfmcmzA212ZKcVptS7CNGV3z1ZRVvPFjHb9sbeyMLT4F8xg86M2Q_ZNDPwXfP7z_dv6pvbj8-Pn87UVrmeSlVdw4KJ2TWDDnMBQ9q8UJ6VAvOqwoQcRZ0hPPWSc56TztoWC-d8RYSzg5BW_2e6e523hn_ViSGfSUwsakrY4m6L-VMaz0TbzVFDGBqv3VwZ7ij9nnojchWz8MZvRxzhpxCQVkrIIv_wHXcU5jfU1jiLBSgskKne0hm2LOyffHOxDUu6T0LimtsEZU75Kqjud_nn_kD9FU_fVB3xl_qb8X6H4ehuLvSiVf_JeswLM9sM4lpiOBCRdScfIT7rOyYw</recordid><startdate>19950703</startdate><enddate>19950703</enddate><creator>Sherman, D R</creator><creator>Sabo, P J</creator><creator>Hickey, M J</creator><creator>Arain, T M</creator><creator>Mahairas, G G</creator><creator>Yuan, Y</creator><creator>Barry, 3rd, C E</creator><creator>Stover, C K</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19950703</creationdate><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><author>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Bacteria</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Cattle</topic><topic>Disease</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic loci</topic><topic>Gram negative bacteria</topic><topic>Granuloma - microbiology</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Macrophages - microbiology</topic><topic>Methionine - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mycobacterium - genetics</topic><topic>Mycobacterium - pathogenicity</topic><topic>Mycobacterium - physiology</topic><topic>Mycobacterium avium - genetics</topic><topic>Mycobacterium avium - pathogenicity</topic><topic>Mycobacterium avium - physiology</topic><topic>Mycobacterium bovis - genetics</topic><topic>Mycobacterium bovis - pathogenicity</topic><topic>Mycobacterium bovis - physiology</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Oligodeoxyribonucleotides</topic><topic>Open reading frames</topic><topic>Oxidative Stress</topic><topic>Oxidoreductases - biosynthesis</topic><topic>Oxidoreductases - genetics</topic><topic>Oxygen</topic><topic>Peroxidases</topic><topic>Peroxides</topic><topic>Peroxiredoxins</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>Sulfur Radioisotopes</topic><topic>Toxicity</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherman, D R</creatorcontrib><creatorcontrib>Sabo, P J</creatorcontrib><creatorcontrib>Hickey, M J</creatorcontrib><creatorcontrib>Arain, T M</creatorcontrib><creatorcontrib>Mahairas, G G</creatorcontrib><creatorcontrib>Yuan, Y</creatorcontrib><creatorcontrib>Barry, 3rd, C E</creatorcontrib><creatorcontrib>Stover, C K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherman, D R</au><au>Sabo, P J</au><au>Hickey, M J</au><au>Arain, T M</au><au>Mahairas, G G</au><au>Yuan, Y</au><au>Barry, 3rd, C E</au><au>Stover, C K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1995-07-03</date><risdate>1995</risdate><volume>92</volume><issue>14</issue><spage>6625</spage><epage>6629</epage><pages>6625-6629</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7604044</pmid><doi>10.1073/pnas.92.14.6625</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1995-07, Vol.92 (14), p.6625-6629 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_92_14_6625_fulltext |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Autoradiography Bacteria Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Base Sequence Biology Cattle Disease DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA-Binding Proteins Gene Expression Genes Genes, Bacterial Genetic loci Gram negative bacteria Granuloma - microbiology Humans Hydrogen Macrophages - microbiology Methionine - metabolism Molecular Sequence Data Mycobacterium - genetics Mycobacterium - pathogenicity Mycobacterium - physiology Mycobacterium avium - genetics Mycobacterium avium - pathogenicity Mycobacterium avium - physiology Mycobacterium bovis - genetics Mycobacterium bovis - pathogenicity Mycobacterium bovis - physiology Mycobacterium smegmatis Mycobacterium tuberculosis Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - pathogenicity Mycobacterium tuberculosis - physiology Oligodeoxyribonucleotides Open reading frames Oxidative Stress Oxidoreductases - biosynthesis Oxidoreductases - genetics Oxygen Peroxidases Peroxides Peroxiredoxins Proteins Repressor Proteins - genetics Sequence Homology, Amino Acid Species Specificity Sulfur Radioisotopes Toxicity Transcription Factors |
title | Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disparate%20Responses%20to%20Oxidative%20Stress%20in%20Saprophytic%20and%20Pathogenic%20Mycobacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sherman,%20D%20R&rft.date=1995-07-03&rft.volume=92&rft.issue=14&rft.spage=6625&rft.epage=6629&rft.pages=6625-6629&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.92.14.6625&rft_dat=%3Cjstor_pnas_%3E2367896%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201299758&rft_id=info:pmid/7604044&rft_jstor_id=2367896&rfr_iscdi=true |