Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria

To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1995-07, Vol.92 (14), p.6625-6629
Hauptverfasser: Sherman, D R, Sabo, P J, Hickey, M J, Arain, T M, Mahairas, G G, Yuan, Y, Barry, 3rd, C E, Stover, C K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6629
container_issue 14
container_start_page 6625
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 92
creator Sherman, D R
Sabo, P J
Hickey, M J
Arain, T M
Mahairas, G G
Yuan, Y
Barry, 3rd, C E
Stover, C K
description To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.
doi_str_mv 10.1073/pnas.92.14.6625
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_92_14_6625_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2367896</jstor_id><sourcerecordid>2367896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</originalsourceid><addsrcrecordid>eNp9kcuLFDEQxoMo67h69qLSeNBTz-b9AC-yPmFlZVfPIZ2kdzL0dNokvez892aYcXwchIKi-H5fUcUHwFMElwgKcjaNJi8VXiK65Byze2CBoEItpwreBwsIsWglxfQheJTzGkKomIQn4ERwSCGlC3D1LuTJJFN8c-XzFMfsc1Nic3kXnCnh1jfXJfmcmzA212ZKcVptS7CNGV3z1ZRVvPFjHb9sbeyMLT4F8xg86M2Q_ZNDPwXfP7z_dv6pvbj8-Pn87UVrmeSlVdw4KJ2TWDDnMBQ9q8UJ6VAvOqwoQcRZ0hPPWSc56TztoWC-d8RYSzg5BW_2e6e523hn_ViSGfSUwsakrY4m6L-VMaz0TbzVFDGBqv3VwZ7ij9nnojchWz8MZvRxzhpxCQVkrIIv_wHXcU5jfU1jiLBSgskKne0hm2LOyffHOxDUu6T0LimtsEZU75Kqjud_nn_kD9FU_fVB3xl_qb8X6H4ehuLvSiVf_JeswLM9sM4lpiOBCRdScfIT7rOyYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201299758</pqid></control><display><type>article</type><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</creator><creatorcontrib>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</creatorcontrib><description>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.92.14.6625</identifier><identifier>PMID: 7604044</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Animals ; Autoradiography ; Bacteria ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Base Sequence ; Biology ; Cattle ; Disease ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA-Binding Proteins ; Gene Expression ; Genes ; Genes, Bacterial ; Genetic loci ; Gram negative bacteria ; Granuloma - microbiology ; Humans ; Hydrogen ; Macrophages - microbiology ; Methionine - metabolism ; Molecular Sequence Data ; Mycobacterium - genetics ; Mycobacterium - pathogenicity ; Mycobacterium - physiology ; Mycobacterium avium - genetics ; Mycobacterium avium - pathogenicity ; Mycobacterium avium - physiology ; Mycobacterium bovis - genetics ; Mycobacterium bovis - pathogenicity ; Mycobacterium bovis - physiology ; Mycobacterium smegmatis ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - pathogenicity ; Mycobacterium tuberculosis - physiology ; Oligodeoxyribonucleotides ; Open reading frames ; Oxidative Stress ; Oxidoreductases - biosynthesis ; Oxidoreductases - genetics ; Oxygen ; Peroxidases ; Peroxides ; Peroxiredoxins ; Proteins ; Repressor Proteins - genetics ; Sequence Homology, Amino Acid ; Species Specificity ; Sulfur Radioisotopes ; Toxicity ; Transcription Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1995-07, Vol.92 (14), p.6625-6629</ispartof><rights>Copyright 1995 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 3, 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/92/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2367896$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2367896$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7604044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherman, D R</creatorcontrib><creatorcontrib>Sabo, P J</creatorcontrib><creatorcontrib>Hickey, M J</creatorcontrib><creatorcontrib>Arain, T M</creatorcontrib><creatorcontrib>Mahairas, G G</creatorcontrib><creatorcontrib>Yuan, Y</creatorcontrib><creatorcontrib>Barry, 3rd, C E</creatorcontrib><creatorcontrib>Stover, C K</creatorcontrib><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Bacteria</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Cattle</subject><subject>Disease</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic loci</subject><subject>Gram negative bacteria</subject><subject>Granuloma - microbiology</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Macrophages - microbiology</subject><subject>Methionine - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mycobacterium - genetics</subject><subject>Mycobacterium - pathogenicity</subject><subject>Mycobacterium - physiology</subject><subject>Mycobacterium avium - genetics</subject><subject>Mycobacterium avium - pathogenicity</subject><subject>Mycobacterium avium - physiology</subject><subject>Mycobacterium bovis - genetics</subject><subject>Mycobacterium bovis - pathogenicity</subject><subject>Mycobacterium bovis - physiology</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Oligodeoxyribonucleotides</subject><subject>Open reading frames</subject><subject>Oxidative Stress</subject><subject>Oxidoreductases - biosynthesis</subject><subject>Oxidoreductases - genetics</subject><subject>Oxygen</subject><subject>Peroxidases</subject><subject>Peroxides</subject><subject>Peroxiredoxins</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>Sulfur Radioisotopes</subject><subject>Toxicity</subject><subject>Transcription Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcuLFDEQxoMo67h69qLSeNBTz-b9AC-yPmFlZVfPIZ2kdzL0dNokvez892aYcXwchIKi-H5fUcUHwFMElwgKcjaNJi8VXiK65Byze2CBoEItpwreBwsIsWglxfQheJTzGkKomIQn4ERwSCGlC3D1LuTJJFN8c-XzFMfsc1Nic3kXnCnh1jfXJfmcmzA212ZKcVptS7CNGV3z1ZRVvPFjHb9sbeyMLT4F8xg86M2Q_ZNDPwXfP7z_dv6pvbj8-Pn87UVrmeSlVdw4KJ2TWDDnMBQ9q8UJ6VAvOqwoQcRZ0hPPWSc56TztoWC-d8RYSzg5BW_2e6e523hn_ViSGfSUwsakrY4m6L-VMaz0TbzVFDGBqv3VwZ7ij9nnojchWz8MZvRxzhpxCQVkrIIv_wHXcU5jfU1jiLBSgskKne0hm2LOyffHOxDUu6T0LimtsEZU75Kqjud_nn_kD9FU_fVB3xl_qb8X6H4ehuLvSiVf_JeswLM9sM4lpiOBCRdScfIT7rOyYw</recordid><startdate>19950703</startdate><enddate>19950703</enddate><creator>Sherman, D R</creator><creator>Sabo, P J</creator><creator>Hickey, M J</creator><creator>Arain, T M</creator><creator>Mahairas, G G</creator><creator>Yuan, Y</creator><creator>Barry, 3rd, C E</creator><creator>Stover, C K</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19950703</creationdate><title>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</title><author>Sherman, D R ; Sabo, P J ; Hickey, M J ; Arain, T M ; Mahairas, G G ; Yuan, Y ; Barry, 3rd, C E ; Stover, C K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-96ad08dd8275dd207f57f5633b1f7b294313dc3f3e65b863be4f075efd3acc363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Bacteria</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Cattle</topic><topic>Disease</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic loci</topic><topic>Gram negative bacteria</topic><topic>Granuloma - microbiology</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Macrophages - microbiology</topic><topic>Methionine - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mycobacterium - genetics</topic><topic>Mycobacterium - pathogenicity</topic><topic>Mycobacterium - physiology</topic><topic>Mycobacterium avium - genetics</topic><topic>Mycobacterium avium - pathogenicity</topic><topic>Mycobacterium avium - physiology</topic><topic>Mycobacterium bovis - genetics</topic><topic>Mycobacterium bovis - pathogenicity</topic><topic>Mycobacterium bovis - physiology</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Oligodeoxyribonucleotides</topic><topic>Open reading frames</topic><topic>Oxidative Stress</topic><topic>Oxidoreductases - biosynthesis</topic><topic>Oxidoreductases - genetics</topic><topic>Oxygen</topic><topic>Peroxidases</topic><topic>Peroxides</topic><topic>Peroxiredoxins</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>Sulfur Radioisotopes</topic><topic>Toxicity</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherman, D R</creatorcontrib><creatorcontrib>Sabo, P J</creatorcontrib><creatorcontrib>Hickey, M J</creatorcontrib><creatorcontrib>Arain, T M</creatorcontrib><creatorcontrib>Mahairas, G G</creatorcontrib><creatorcontrib>Yuan, Y</creatorcontrib><creatorcontrib>Barry, 3rd, C E</creatorcontrib><creatorcontrib>Stover, C K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherman, D R</au><au>Sabo, P J</au><au>Hickey, M J</au><au>Arain, T M</au><au>Mahairas, G G</au><au>Yuan, Y</au><au>Barry, 3rd, C E</au><au>Stover, C K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1995-07-03</date><risdate>1995</risdate><volume>92</volume><issue>14</issue><spage>6625</spage><epage>6629</epage><pages>6625-6629</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To persist in macrophages and in granulomatous caseous lesions, pathogenic mycobacteria must be equipped to withstand the action of toxic oxygen metabolites. In Gram-negative bacteria, the OxyR protein is a critical component of the oxidative stress response. OxyR is both a sensor of reactive oxygen species and a transcriptional activator, inducing expression of detoxifying enzymes such as catalase/hydroperoxidase and alkyl hydroperoxidase. We have characterized the responses of various mycobacteria to hydrogen peroxide both phenotypically and at the levels of gene and protein expression. Only the saprophytic Mycobacterium smegmatis induced a protective oxidative stress response analogous to the OxyR response of Gram-negative bacteria. Under similar conditions, the pathogenic mycobacteria exhibited a limited, nonprotective response, which in the case of Mycobacterium tuberculosis was restricted to induction of a single protein, KatG. We have also isolated DNA sequences homologous to oxyR and ahpC from M. tuberculosis and Mycobacterium avium. While the M. avium oxyR appears intact, the oxyR homologue of M. tuberculosis contains numerous deletions and frameshifts and is probably nonfunctional. Apparently the response of pathogenic mycobacteria to oxidative stress differs significantly from the inducible OxyR response of other bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7604044</pmid><doi>10.1073/pnas.92.14.6625</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1995-07, Vol.92 (14), p.6625-6629
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_92_14_6625_fulltext
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Autoradiography
Bacteria
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Base Sequence
Biology
Cattle
Disease
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA-Binding Proteins
Gene Expression
Genes
Genes, Bacterial
Genetic loci
Gram negative bacteria
Granuloma - microbiology
Humans
Hydrogen
Macrophages - microbiology
Methionine - metabolism
Molecular Sequence Data
Mycobacterium - genetics
Mycobacterium - pathogenicity
Mycobacterium - physiology
Mycobacterium avium - genetics
Mycobacterium avium - pathogenicity
Mycobacterium avium - physiology
Mycobacterium bovis - genetics
Mycobacterium bovis - pathogenicity
Mycobacterium bovis - physiology
Mycobacterium smegmatis
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - pathogenicity
Mycobacterium tuberculosis - physiology
Oligodeoxyribonucleotides
Open reading frames
Oxidative Stress
Oxidoreductases - biosynthesis
Oxidoreductases - genetics
Oxygen
Peroxidases
Peroxides
Peroxiredoxins
Proteins
Repressor Proteins - genetics
Sequence Homology, Amino Acid
Species Specificity
Sulfur Radioisotopes
Toxicity
Transcription Factors
title Disparate Responses to Oxidative Stress in Saprophytic and Pathogenic Mycobacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disparate%20Responses%20to%20Oxidative%20Stress%20in%20Saprophytic%20and%20Pathogenic%20Mycobacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sherman,%20D%20R&rft.date=1995-07-03&rft.volume=92&rft.issue=14&rft.spage=6625&rft.epage=6629&rft.pages=6625-6629&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.92.14.6625&rft_dat=%3Cjstor_pnas_%3E2367896%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201299758&rft_id=info:pmid/7604044&rft_jstor_id=2367896&rfr_iscdi=true