The T-to-R Transformation in Hemoglobin: A Reevaluation

The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1994-11, Vol.91 (23), p.11113-11117
Hauptverfasser: Srinivasan, Rajgopal, Rose, George D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11117
container_issue 23
container_start_page 11113
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 91
creator Srinivasan, Rajgopal
Rose, George D.
description The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.
doi_str_mv 10.1073/pnas.91.23.11113
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_91_23_11113_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2365542</jstor_id><sourcerecordid>2365542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</originalsourceid><addsrcrecordid>eNp9kc9LHDEcxUNR7Gp776HFwYN4me03vyfiRcRWQRBkew6Z2URnmUm2ycyi_71Zd7vYHppLIO_zHt9vHkJfMEwxSPp96U2aKjwldIrzoR_QBIPCpWAK9tAEgMiyYoR9RIcpLQBA8QoO0IFUkgBWEyRnT7aYlUMoH4pZND65EHsztMEXrS9ubB8eu1C3_ry4LB6sXZlufFM_oX1numQ_b-8j9OvH9ezqpry7_3l7dXlXNkyxoawrWlOg3DDu5hQbwLwyznEpaoVdfrBMSsGAC4llNa-sU6YWzgnmRGMaQ4_QxSZ3Oda9nTfWD9F0ehnb3sQXHUyr_1Z8-6Qfw0ozjqXM9tOtPYbfo02D7tvU2K4z3oYxaSkqyoiCDJ78Ay7CGH1eTeePolIqsk6DDdTEkFK0bjcHBr3uQ6_70AprQvVbH9ny7f38O8O2gKyfbfW184_6LkG7sesG-zxk9Pj_aCa-bohFGkLcIYQKzhmhr6y2p7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201377927</pqid></control><display><type>article</type><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Srinivasan, Rajgopal ; Rose, George D.</creator><creatorcontrib>Srinivasan, Rajgopal ; Rose, George D.</creatorcontrib><description>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.23.11113</identifier><identifier>PMID: 7972019</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Allosteric Regulation ; Amino Acid Sequence ; Atoms ; Biochemistry ; Buddhism ; Crystal structure ; Dimers ; Hemoglobin ; Hemoglobins ; Hemoglobins - chemistry ; Humans ; In Vitro Techniques ; Judaism ; Linear interpolation ; Models, Molecular ; Molecular Sequence Data ; Molecules ; Protein Conformation ; Surface areas</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-11, Vol.91 (23), p.11113-11117</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 8, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2365542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2365542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7972019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, Rajgopal</creatorcontrib><creatorcontrib>Rose, George D.</creatorcontrib><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Buddhism</subject><subject>Crystal structure</subject><subject>Dimers</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Hemoglobins - chemistry</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Judaism</subject><subject>Linear interpolation</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Protein Conformation</subject><subject>Surface areas</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9LHDEcxUNR7Gp776HFwYN4me03vyfiRcRWQRBkew6Z2URnmUm2ycyi_71Zd7vYHppLIO_zHt9vHkJfMEwxSPp96U2aKjwldIrzoR_QBIPCpWAK9tAEgMiyYoR9RIcpLQBA8QoO0IFUkgBWEyRnT7aYlUMoH4pZND65EHsztMEXrS9ubB8eu1C3_ry4LB6sXZlufFM_oX1numQ_b-8j9OvH9ezqpry7_3l7dXlXNkyxoawrWlOg3DDu5hQbwLwyznEpaoVdfrBMSsGAC4llNa-sU6YWzgnmRGMaQ4_QxSZ3Oda9nTfWD9F0ehnb3sQXHUyr_1Z8-6Qfw0ozjqXM9tOtPYbfo02D7tvU2K4z3oYxaSkqyoiCDJ78Ay7CGH1eTeePolIqsk6DDdTEkFK0bjcHBr3uQ6_70AprQvVbH9ny7f38O8O2gKyfbfW184_6LkG7sesG-zxk9Pj_aCa-bohFGkLcIYQKzhmhr6y2p7g</recordid><startdate>19941108</startdate><enddate>19941108</enddate><creator>Srinivasan, Rajgopal</creator><creator>Rose, George D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19941108</creationdate><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><author>Srinivasan, Rajgopal ; Rose, George D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Buddhism</topic><topic>Crystal structure</topic><topic>Dimers</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Hemoglobins - chemistry</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Judaism</topic><topic>Linear interpolation</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Protein Conformation</topic><topic>Surface areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Rajgopal</creatorcontrib><creatorcontrib>Rose, George D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Rajgopal</au><au>Rose, George D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The T-to-R Transformation in Hemoglobin: A Reevaluation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-11-08</date><risdate>1994</risdate><volume>91</volume><issue>23</issue><spage>11113</spage><epage>11117</epage><pages>11113-11117</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7972019</pmid><doi>10.1073/pnas.91.23.11113</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1994-11, Vol.91 (23), p.11113-11117
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_91_23_11113_fulltext
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Allosteric Regulation
Amino Acid Sequence
Atoms
Biochemistry
Buddhism
Crystal structure
Dimers
Hemoglobin
Hemoglobins
Hemoglobins - chemistry
Humans
In Vitro Techniques
Judaism
Linear interpolation
Models, Molecular
Molecular Sequence Data
Molecules
Protein Conformation
Surface areas
title The T-to-R Transformation in Hemoglobin: A Reevaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20T-to-R%20Transformation%20in%20Hemoglobin:%20A%20Reevaluation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Srinivasan,%20Rajgopal&rft.date=1994-11-08&rft.volume=91&rft.issue=23&rft.spage=11113&rft.epage=11117&rft.pages=11113-11117&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.91.23.11113&rft_dat=%3Cjstor_pnas_%3E2365542%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201377927&rft_id=info:pmid/7972019&rft_jstor_id=2365542&rfr_iscdi=true