The T-to-R Transformation in Hemoglobin: A Reevaluation
The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Differen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1994-11, Vol.91 (23), p.11113-11117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11117 |
---|---|
container_issue | 23 |
container_start_page | 11113 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 91 |
creator | Srinivasan, Rajgopal Rose, George D. |
description | The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again. |
doi_str_mv | 10.1073/pnas.91.23.11113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_91_23_11113_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2365542</jstor_id><sourcerecordid>2365542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</originalsourceid><addsrcrecordid>eNp9kc9LHDEcxUNR7Gp776HFwYN4me03vyfiRcRWQRBkew6Z2URnmUm2ycyi_71Zd7vYHppLIO_zHt9vHkJfMEwxSPp96U2aKjwldIrzoR_QBIPCpWAK9tAEgMiyYoR9RIcpLQBA8QoO0IFUkgBWEyRnT7aYlUMoH4pZND65EHsztMEXrS9ubB8eu1C3_ry4LB6sXZlufFM_oX1numQ_b-8j9OvH9ezqpry7_3l7dXlXNkyxoawrWlOg3DDu5hQbwLwyznEpaoVdfrBMSsGAC4llNa-sU6YWzgnmRGMaQ4_QxSZ3Oda9nTfWD9F0ehnb3sQXHUyr_1Z8-6Qfw0ozjqXM9tOtPYbfo02D7tvU2K4z3oYxaSkqyoiCDJ78Ay7CGH1eTeePolIqsk6DDdTEkFK0bjcHBr3uQ6_70AprQvVbH9ny7f38O8O2gKyfbfW184_6LkG7sesG-zxk9Pj_aCa-bohFGkLcIYQKzhmhr6y2p7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201377927</pqid></control><display><type>article</type><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Srinivasan, Rajgopal ; Rose, George D.</creator><creatorcontrib>Srinivasan, Rajgopal ; Rose, George D.</creatorcontrib><description>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.23.11113</identifier><identifier>PMID: 7972019</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Allosteric Regulation ; Amino Acid Sequence ; Atoms ; Biochemistry ; Buddhism ; Crystal structure ; Dimers ; Hemoglobin ; Hemoglobins ; Hemoglobins - chemistry ; Humans ; In Vitro Techniques ; Judaism ; Linear interpolation ; Models, Molecular ; Molecular Sequence Data ; Molecules ; Protein Conformation ; Surface areas</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-11, Vol.91 (23), p.11113-11117</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 8, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2365542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2365542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7972019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, Rajgopal</creatorcontrib><creatorcontrib>Rose, George D.</creatorcontrib><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Buddhism</subject><subject>Crystal structure</subject><subject>Dimers</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Hemoglobins - chemistry</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Judaism</subject><subject>Linear interpolation</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Protein Conformation</subject><subject>Surface areas</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9LHDEcxUNR7Gp776HFwYN4me03vyfiRcRWQRBkew6Z2URnmUm2ycyi_71Zd7vYHppLIO_zHt9vHkJfMEwxSPp96U2aKjwldIrzoR_QBIPCpWAK9tAEgMiyYoR9RIcpLQBA8QoO0IFUkgBWEyRnT7aYlUMoH4pZND65EHsztMEXrS9ubB8eu1C3_ry4LB6sXZlufFM_oX1numQ_b-8j9OvH9ezqpry7_3l7dXlXNkyxoawrWlOg3DDu5hQbwLwyznEpaoVdfrBMSsGAC4llNa-sU6YWzgnmRGMaQ4_QxSZ3Oda9nTfWD9F0ehnb3sQXHUyr_1Z8-6Qfw0ozjqXM9tOtPYbfo02D7tvU2K4z3oYxaSkqyoiCDJ78Ay7CGH1eTeePolIqsk6DDdTEkFK0bjcHBr3uQ6_70AprQvVbH9ny7f38O8O2gKyfbfW184_6LkG7sesG-zxk9Pj_aCa-bohFGkLcIYQKzhmhr6y2p7g</recordid><startdate>19941108</startdate><enddate>19941108</enddate><creator>Srinivasan, Rajgopal</creator><creator>Rose, George D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19941108</creationdate><title>The T-to-R Transformation in Hemoglobin: A Reevaluation</title><author>Srinivasan, Rajgopal ; Rose, George D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-b83b3035a45fd31a0158aff576b91f31ae477640567178d8ef9ab6ff64f6caca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Buddhism</topic><topic>Crystal structure</topic><topic>Dimers</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Hemoglobins - chemistry</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Judaism</topic><topic>Linear interpolation</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Protein Conformation</topic><topic>Surface areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Rajgopal</creatorcontrib><creatorcontrib>Rose, George D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Rajgopal</au><au>Rose, George D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The T-to-R Transformation in Hemoglobin: A Reevaluation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-11-08</date><risdate>1994</risdate><volume>91</volume><issue>23</issue><spage>11113</spage><epage>11117</epage><pages>11113-11117</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The relationship between the T, R, and R2 quaternary forms of hemoglobin is examined by computational experiments. Contrary to previous suggestions, we propose that the R quaternary form may lie on the pathway from T to R2. This proposal is consistent with four independent observations. (i) Difference distance maps are used to identify those parts of the molecule that undergo conformational change upon oxygenation. The simplest interpretation of these maps brackets R between T and R2. (ii) Linear interpolation from T to R2 passes through R. (iii) The well-known "switch" region (so called because, upon transition between the T and R quaternary forms, a residue from the β 2 subunit toggles between two stable positions within the α 1 subunit) progresses from T through R to R2, successively. (iv) A hitherto-undocumented feature, diagnostic of the R structure, is noted within the α subunit: upon transformation from T to R, the β-turns at the amino termini of the E and F helices flip from one turn type to another. Upon transformation from R to R2, the latter turn-a strained conformation-flips back again.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7972019</pmid><doi>10.1073/pnas.91.23.11113</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1994-11, Vol.91 (23), p.11113-11117 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_91_23_11113_fulltext |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation Amino Acid Sequence Atoms Biochemistry Buddhism Crystal structure Dimers Hemoglobin Hemoglobins Hemoglobins - chemistry Humans In Vitro Techniques Judaism Linear interpolation Models, Molecular Molecular Sequence Data Molecules Protein Conformation Surface areas |
title | The T-to-R Transformation in Hemoglobin: A Reevaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20T-to-R%20Transformation%20in%20Hemoglobin:%20A%20Reevaluation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Srinivasan,%20Rajgopal&rft.date=1994-11-08&rft.volume=91&rft.issue=23&rft.spage=11113&rft.epage=11117&rft.pages=11113-11117&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.91.23.11113&rft_dat=%3Cjstor_pnas_%3E2365542%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201377927&rft_id=info:pmid/7972019&rft_jstor_id=2365542&rfr_iscdi=true |