A Graded Representation Model for Macdonald's Polynomials
We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1993-04, Vol.90 (8), p.3607-3610 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3610 |
---|---|
container_issue | 8 |
container_start_page | 3607 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 90 |
creator | Garsia, Adriano M. Haiman, Mark |
description | We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases. |
doi_str_mv | 10.1073/pnas.90.8.3607 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_90_8_3607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361794</jstor_id><sourcerecordid>2361794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</originalsourceid><addsrcrecordid>eNp90c2L1DAUAPAgijuuXj2pFJH11PrSZJoEvCyLrsIuiug5pMmLdsg0Y9KK-9-bYeq4evD0Du_3PpJHyGMKDQXBXu1GkxsFjWxYB-IOWVFQtO64grtkBdCKWvKWn5AHOW8AQK0l3CcnlBbMhFgRdV5dJuPQVZ9wlzDjOJlpiGN1HR2GysdUXRvr4miCe5mrjzHcjHE7mJAfknu-BHy0xFPy5e2bzxfv6qsPl-8vzq9qW2ZNtWLCoPdCGte21IHqWWvXhuK6t2gAnaeUSu7BCkSrFJXIBVLmeud8bww7Ja8PfXdzv0Vny4bJBL1Lw9akGx3NoP_OjMM3_TX-0LxjayjlZ0t5it9nzJPeDtliCGbEOGctGJflK7oCn_8DN3FO5d1Zt0BZJ6QSBTUHZFPMOaE_7kFB7w-i9wfRCrTU-4OUgme3t__DlwsU8GIBJlsTfDKjHfLRcSFbvpaFPV3Yvv_v7O05Z__Laz-HMOHPqcAnB7jJU0xH2bKOCsXZL00Ttd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367897</pqid></control><display><type>article</type><title>A Graded Representation Model for Macdonald's Polynomials</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garsia, Adriano M. ; Haiman, Mark</creator><creatorcontrib>Garsia, Adriano M. ; Haiman, Mark</creatorcontrib><description>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.8.3607</identifier><identifier>PMID: 11607377</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Algebra ; Coefficients ; Commutative rings and algebras ; Coordinate systems ; Exact sciences and technology ; Mathematical functions ; Mathematical induction ; Mathematical rings ; Mathematical theorems ; Mathematics ; Polynomials ; Sciences and techniques of general use ; Symmetry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (8), p.3607-3610</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 15, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4782458$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11607377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garsia, Adriano M.</creatorcontrib><creatorcontrib>Haiman, Mark</creatorcontrib><title>A Graded Representation Model for Macdonald's Polynomials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Commutative rings and algebras</subject><subject>Coordinate systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical functions</subject><subject>Mathematical induction</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Symmetry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp90c2L1DAUAPAgijuuXj2pFJH11PrSZJoEvCyLrsIuiug5pMmLdsg0Y9KK-9-bYeq4evD0Du_3PpJHyGMKDQXBXu1GkxsFjWxYB-IOWVFQtO64grtkBdCKWvKWn5AHOW8AQK0l3CcnlBbMhFgRdV5dJuPQVZ9wlzDjOJlpiGN1HR2GysdUXRvr4miCe5mrjzHcjHE7mJAfknu-BHy0xFPy5e2bzxfv6qsPl-8vzq9qW2ZNtWLCoPdCGte21IHqWWvXhuK6t2gAnaeUSu7BCkSrFJXIBVLmeud8bww7Ja8PfXdzv0Vny4bJBL1Lw9akGx3NoP_OjMM3_TX-0LxjayjlZ0t5it9nzJPeDtliCGbEOGctGJflK7oCn_8DN3FO5d1Zt0BZJ6QSBTUHZFPMOaE_7kFB7w-i9wfRCrTU-4OUgme3t__DlwsU8GIBJlsTfDKjHfLRcSFbvpaFPV3Yvv_v7O05Z__Laz-HMOHPqcAnB7jJU0xH2bKOCsXZL00Ttd0</recordid><startdate>19930415</startdate><enddate>19930415</enddate><creator>Garsia, Adriano M.</creator><creator>Haiman, Mark</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930415</creationdate><title>A Graded Representation Model for Macdonald's Polynomials</title><author>Garsia, Adriano M. ; Haiman, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Commutative rings and algebras</topic><topic>Coordinate systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical functions</topic><topic>Mathematical induction</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garsia, Adriano M.</creatorcontrib><creatorcontrib>Haiman, Mark</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garsia, Adriano M.</au><au>Haiman, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graded Representation Model for Macdonald's Polynomials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-04-15</date><risdate>1993</risdate><volume>90</volume><issue>8</issue><spage>3607</spage><epage>3610</epage><pages>3607-3610</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11607377</pmid><doi>10.1073/pnas.90.8.3607</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (8), p.3607-3610 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_90_8_3607 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algebra Coefficients Commutative rings and algebras Coordinate systems Exact sciences and technology Mathematical functions Mathematical induction Mathematical rings Mathematical theorems Mathematics Polynomials Sciences and techniques of general use Symmetry |
title | A Graded Representation Model for Macdonald's Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graded%20Representation%20Model%20for%20Macdonald's%20Polynomials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garsia,%20Adriano%20M.&rft.date=1993-04-15&rft.volume=90&rft.issue=8&rft.spage=3607&rft.epage=3610&rft.pages=3607-3610&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.8.3607&rft_dat=%3Cjstor_pnas_%3E2361794%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201367897&rft_id=info:pmid/11607377&rft_jstor_id=2361794&rfr_iscdi=true |