A Graded Representation Model for Macdonald's Polynomials

We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-04, Vol.90 (8), p.3607-3610
Hauptverfasser: Garsia, Adriano M., Haiman, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3610
container_issue 8
container_start_page 3607
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Garsia, Adriano M.
Haiman, Mark
description We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.
doi_str_mv 10.1073/pnas.90.8.3607
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_90_8_3607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361794</jstor_id><sourcerecordid>2361794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</originalsourceid><addsrcrecordid>eNp90c2L1DAUAPAgijuuXj2pFJH11PrSZJoEvCyLrsIuiug5pMmLdsg0Y9KK-9-bYeq4evD0Du_3PpJHyGMKDQXBXu1GkxsFjWxYB-IOWVFQtO64grtkBdCKWvKWn5AHOW8AQK0l3CcnlBbMhFgRdV5dJuPQVZ9wlzDjOJlpiGN1HR2GysdUXRvr4miCe5mrjzHcjHE7mJAfknu-BHy0xFPy5e2bzxfv6qsPl-8vzq9qW2ZNtWLCoPdCGte21IHqWWvXhuK6t2gAnaeUSu7BCkSrFJXIBVLmeud8bww7Ja8PfXdzv0Vny4bJBL1Lw9akGx3NoP_OjMM3_TX-0LxjayjlZ0t5it9nzJPeDtliCGbEOGctGJflK7oCn_8DN3FO5d1Zt0BZJ6QSBTUHZFPMOaE_7kFB7w-i9wfRCrTU-4OUgme3t__DlwsU8GIBJlsTfDKjHfLRcSFbvpaFPV3Yvv_v7O05Z__Laz-HMOHPqcAnB7jJU0xH2bKOCsXZL00Ttd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367897</pqid></control><display><type>article</type><title>A Graded Representation Model for Macdonald's Polynomials</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garsia, Adriano M. ; Haiman, Mark</creator><creatorcontrib>Garsia, Adriano M. ; Haiman, Mark</creatorcontrib><description>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.8.3607</identifier><identifier>PMID: 11607377</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Algebra ; Coefficients ; Commutative rings and algebras ; Coordinate systems ; Exact sciences and technology ; Mathematical functions ; Mathematical induction ; Mathematical rings ; Mathematical theorems ; Mathematics ; Polynomials ; Sciences and techniques of general use ; Symmetry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (8), p.3607-3610</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 15, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361794$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361794$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4782458$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11607377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garsia, Adriano M.</creatorcontrib><creatorcontrib>Haiman, Mark</creatorcontrib><title>A Graded Representation Model for Macdonald's Polynomials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Commutative rings and algebras</subject><subject>Coordinate systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical functions</subject><subject>Mathematical induction</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Symmetry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp90c2L1DAUAPAgijuuXj2pFJH11PrSZJoEvCyLrsIuiug5pMmLdsg0Y9KK-9-bYeq4evD0Du_3PpJHyGMKDQXBXu1GkxsFjWxYB-IOWVFQtO64grtkBdCKWvKWn5AHOW8AQK0l3CcnlBbMhFgRdV5dJuPQVZ9wlzDjOJlpiGN1HR2GysdUXRvr4miCe5mrjzHcjHE7mJAfknu-BHy0xFPy5e2bzxfv6qsPl-8vzq9qW2ZNtWLCoPdCGte21IHqWWvXhuK6t2gAnaeUSu7BCkSrFJXIBVLmeud8bww7Ja8PfXdzv0Vny4bJBL1Lw9akGx3NoP_OjMM3_TX-0LxjayjlZ0t5it9nzJPeDtliCGbEOGctGJflK7oCn_8DN3FO5d1Zt0BZJ6QSBTUHZFPMOaE_7kFB7w-i9wfRCrTU-4OUgme3t__DlwsU8GIBJlsTfDKjHfLRcSFbvpaFPV3Yvv_v7O05Z__Laz-HMOHPqcAnB7jJU0xH2bKOCsXZL00Ttd0</recordid><startdate>19930415</startdate><enddate>19930415</enddate><creator>Garsia, Adriano M.</creator><creator>Haiman, Mark</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930415</creationdate><title>A Graded Representation Model for Macdonald's Polynomials</title><author>Garsia, Adriano M. ; Haiman, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-937aeff78ad221d09b32c5a1e5bcea0edf11184f0c7eec9918e47e13dbddfbaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Commutative rings and algebras</topic><topic>Coordinate systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical functions</topic><topic>Mathematical induction</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garsia, Adriano M.</creatorcontrib><creatorcontrib>Haiman, Mark</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garsia, Adriano M.</au><au>Haiman, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graded Representation Model for Macdonald's Polynomials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-04-15</date><risdate>1993</risdate><volume>90</volume><issue>8</issue><spage>3607</spage><epage>3610</epage><pages>3607-3610</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We define doubly graded Snmodules Rμfor which we conjecture that the multiplicities of irreducible representations in various bi-degrees are given by the Macdonald coefficients Kλμ. Assuming one fundamental conjecture, the modules Rμcan be given several equivalent definitions, which we discuss. We prove the conjectures in various special cases.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11607377</pmid><doi>10.1073/pnas.90.8.3607</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (8), p.3607-3610
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_90_8_3607
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algebra
Coefficients
Commutative rings and algebras
Coordinate systems
Exact sciences and technology
Mathematical functions
Mathematical induction
Mathematical rings
Mathematical theorems
Mathematics
Polynomials
Sciences and techniques of general use
Symmetry
title A Graded Representation Model for Macdonald's Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graded%20Representation%20Model%20for%20Macdonald's%20Polynomials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garsia,%20Adriano%20M.&rft.date=1993-04-15&rft.volume=90&rft.issue=8&rft.spage=3607&rft.epage=3610&rft.pages=3607-3610&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.8.3607&rft_dat=%3Cjstor_pnas_%3E2361794%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201367897&rft_id=info:pmid/11607377&rft_jstor_id=2361794&rfr_iscdi=true