Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation

A series of methotrexate (MTX)-resistant L1210 leukemia murine ascites tumors were developed in vivo and analyzed for drug resistance. Three of 20 tumors studied expressed an altered dihydrofolate reductase (DHFR) and each was identical, having a C to T base transition at nucleotide 46 in the DHFR g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-12, Vol.90 (24), p.11797-11801
Hauptverfasser: Dicker, Adam P., Waltham, Mark C., Volkenandt, Matthias, Schweitzer, Barry I., Otter, Glenys M., Schmid, Franz a., Sirotnak, Francis M., Bertino, Joseph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11801
container_issue 24
container_start_page 11797
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Dicker, Adam P.
Waltham, Mark C.
Volkenandt, Matthias
Schweitzer, Barry I.
Otter, Glenys M.
Schmid, Franz a.
Sirotnak, Francis M.
Bertino, Joseph R.
description A series of methotrexate (MTX)-resistant L1210 leukemia murine ascites tumors were developed in vivo and analyzed for drug resistance. Three of 20 tumors studied expressed an altered dihydrofolate reductase (DHFR) and each was identical, having a C to T base transition at nucleotide 46 in the DHFR gene as demonstrated by PCR and direct sequencing. This transition results in a Gly to Trp substitution at amino acid 15 of the enzyme. Purified altered enzyme displays significantly lower binding affinity for the antifolates MTX, trimetrexate, edatrexate, and trimethoprim with respective Kivalues 165-, 76-, 30-, and 28-fold higher than values obtained for enzyme isolated from parental tumor (wild-type enzyme). Substrate (dihydrofolate) and cofactor (NADPH) binding is also diminished for the mutant enzyme, although to a lesser extent (17.3- and 3.6-fold higher Km, respectively). Gly-15 is highly conserved for all vertebrate species of DHFR but has no known interaction(s), either directly or indirectly, with bound cofactor, substrate, or inhibitor. Protein molecular modeling reveals that the affected residue is 9-12 Å away from the enzyme active site and located in a region analogous to the mobile Met-20 loop domain characterized for Escherichia coli DHFR.
doi_str_mv 10.1073/pnas.90.24.11797
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_90_24_11797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2363550</jstor_id><sourcerecordid>2363550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-3490a69231c8f3e7442644c73914ced454631d3f246cecdd1fce155af2c210363</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EKqGwZwFihBBiM-H6OR6JTdVSQGpAgrK2jMdDHCZ2sD1R--9xmiGiLGBjL8537usg9BjDHENDX2-8TvMW5oTNMW7a5g6aYWhxLVgLd9EMgDS1ZITdRw9SWgFAyyUcoSNJBBdEztCPhc3LkKO90tlWn21yKWtvbOV8pf3u3bptqBZhTLa6HNchVmejrXKodPUx-PrEZLe19RdX3Gdued3F0IdhX6sbTdbFthizzi74h-her4dkH03_Mfp6_vby9H198endh9OTi9pwznJNy-xatIRiI3tqG8aIYMw0tMXM2I5xJijuaE-YMNZ0He6NxZzrnhiCgQp6jN7s627Gb2vbGetz1IPaRLfW8VoF7dRtxbul-h62iklocLG_nOwx_BxtymrtkrHDoL0tZ1CNKKfnAP8FsWg4kZQX8Plf4CqM0ZcbKAKYNCUhWSDYQyaGlKLtDwNjULuw1S5s1YIiTN2EXSxP_1z0YJjSLfqLSdfJ6KGPJVmXDhiVEhhmBXs2YbsGv9XbjV79m1D9OAzZXuWCPtmjq5RDPLCk5MI50F85j9SD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201278428</pqid></control><display><type>article</type><title>Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dicker, Adam P. ; Waltham, Mark C. ; Volkenandt, Matthias ; Schweitzer, Barry I. ; Otter, Glenys M. ; Schmid, Franz a. ; Sirotnak, Francis M. ; Bertino, Joseph R.</creator><creatorcontrib>Dicker, Adam P. ; Waltham, Mark C. ; Volkenandt, Matthias ; Schweitzer, Barry I. ; Otter, Glenys M. ; Schmid, Franz a. ; Sirotnak, Francis M. ; Bertino, Joseph R.</creatorcontrib><description>A series of methotrexate (MTX)-resistant L1210 leukemia murine ascites tumors were developed in vivo and analyzed for drug resistance. Three of 20 tumors studied expressed an altered dihydrofolate reductase (DHFR) and each was identical, having a C to T base transition at nucleotide 46 in the DHFR gene as demonstrated by PCR and direct sequencing. This transition results in a Gly to Trp substitution at amino acid 15 of the enzyme. Purified altered enzyme displays significantly lower binding affinity for the antifolates MTX, trimetrexate, edatrexate, and trimethoprim with respective Kivalues 165-, 76-, 30-, and 28-fold higher than values obtained for enzyme isolated from parental tumor (wild-type enzyme). Substrate (dihydrofolate) and cofactor (NADPH) binding is also diminished for the mutant enzyme, although to a lesser extent (17.3- and 3.6-fold higher Km, respectively). Gly-15 is highly conserved for all vertebrate species of DHFR but has no known interaction(s), either directly or indirectly, with bound cofactor, substrate, or inhibitor. Protein molecular modeling reveals that the affected residue is 9-12 Å away from the enzyme active site and located in a region analogous to the mobile Met-20 loop domain characterized for Escherichia coli DHFR.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.24.11797</identifier><identifier>PMID: 8265628</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Active sites ; Amino Acid Sequence ; Amino acids ; Animals ; Antineoplastic agents ; Base Sequence ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Cell lines ; Chromatography, Affinity ; Complementary DNA ; DNA ; DNA Primers ; DNA, Neoplasm - chemistry ; DNA, Neoplasm - isolation &amp; purification ; Drug Resistance - genetics ; Enzyme Stability ; Enzymes ; Escherichia coli - enzymology ; Folic acid antagonists ; General aspects ; Genetic mutation ; Humans ; Kinetics ; Leukemia ; Leukemia L1210 - drug therapy ; Leukemia L1210 - enzymology ; Leukemia L1210 - genetics ; Medical sciences ; Methotrexate - therapeutic use ; Mice ; Models, Molecular ; Molecular Sequence Data ; NADP - metabolism ; Pharmacology ; Pharmacology. Drug treatments ; Point Mutation ; Polymerase Chain Reaction ; Protein Conformation ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - isolation &amp; purification ; Tetrahydrofolate Dehydrogenase - metabolism ; Time Factors ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-12, Vol.90 (24), p.11797-11801</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Dec 15, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-3490a69231c8f3e7442644c73914ced454631d3f246cecdd1fce155af2c210363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2363550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2363550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3880414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8265628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dicker, Adam P.</creatorcontrib><creatorcontrib>Waltham, Mark C.</creatorcontrib><creatorcontrib>Volkenandt, Matthias</creatorcontrib><creatorcontrib>Schweitzer, Barry I.</creatorcontrib><creatorcontrib>Otter, Glenys M.</creatorcontrib><creatorcontrib>Schmid, Franz a.</creatorcontrib><creatorcontrib>Sirotnak, Francis M.</creatorcontrib><creatorcontrib>Bertino, Joseph R.</creatorcontrib><title>Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A series of methotrexate (MTX)-resistant L1210 leukemia murine ascites tumors were developed in vivo and analyzed for drug resistance. Three of 20 tumors studied expressed an altered dihydrofolate reductase (DHFR) and each was identical, having a C to T base transition at nucleotide 46 in the DHFR gene as demonstrated by PCR and direct sequencing. This transition results in a Gly to Trp substitution at amino acid 15 of the enzyme. Purified altered enzyme displays significantly lower binding affinity for the antifolates MTX, trimetrexate, edatrexate, and trimethoprim with respective Kivalues 165-, 76-, 30-, and 28-fold higher than values obtained for enzyme isolated from parental tumor (wild-type enzyme). Substrate (dihydrofolate) and cofactor (NADPH) binding is also diminished for the mutant enzyme, although to a lesser extent (17.3- and 3.6-fold higher Km, respectively). Gly-15 is highly conserved for all vertebrate species of DHFR but has no known interaction(s), either directly or indirectly, with bound cofactor, substrate, or inhibitor. Protein molecular modeling reveals that the affected residue is 9-12 Å away from the enzyme active site and located in a region analogous to the mobile Met-20 loop domain characterized for Escherichia coli DHFR.</description><subject>Active sites</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cell lines</subject><subject>Chromatography, Affinity</subject><subject>Complementary DNA</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>DNA, Neoplasm - chemistry</subject><subject>DNA, Neoplasm - isolation &amp; purification</subject><subject>Drug Resistance - genetics</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Folic acid antagonists</subject><subject>General aspects</subject><subject>Genetic mutation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Leukemia</subject><subject>Leukemia L1210 - drug therapy</subject><subject>Leukemia L1210 - enzymology</subject><subject>Leukemia L1210 - genetics</subject><subject>Medical sciences</subject><subject>Methotrexate - therapeutic use</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>NADP - metabolism</subject><subject>Pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Point Mutation</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Conformation</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - isolation &amp; purification</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Time Factors</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0EKqGwZwFihBBiM-H6OR6JTdVSQGpAgrK2jMdDHCZ2sD1R--9xmiGiLGBjL8537usg9BjDHENDX2-8TvMW5oTNMW7a5g6aYWhxLVgLd9EMgDS1ZITdRw9SWgFAyyUcoSNJBBdEztCPhc3LkKO90tlWn21yKWtvbOV8pf3u3bptqBZhTLa6HNchVmejrXKodPUx-PrEZLe19RdX3Gdued3F0IdhX6sbTdbFthizzi74h-her4dkH03_Mfp6_vby9H198endh9OTi9pwznJNy-xatIRiI3tqG8aIYMw0tMXM2I5xJijuaE-YMNZ0He6NxZzrnhiCgQp6jN7s627Gb2vbGetz1IPaRLfW8VoF7dRtxbul-h62iklocLG_nOwx_BxtymrtkrHDoL0tZ1CNKKfnAP8FsWg4kZQX8Plf4CqM0ZcbKAKYNCUhWSDYQyaGlKLtDwNjULuw1S5s1YIiTN2EXSxP_1z0YJjSLfqLSdfJ6KGPJVmXDhiVEhhmBXs2YbsGv9XbjV79m1D9OAzZXuWCPtmjq5RDPLCk5MI50F85j9SD</recordid><startdate>19931215</startdate><enddate>19931215</enddate><creator>Dicker, Adam P.</creator><creator>Waltham, Mark C.</creator><creator>Volkenandt, Matthias</creator><creator>Schweitzer, Barry I.</creator><creator>Otter, Glenys M.</creator><creator>Schmid, Franz a.</creator><creator>Sirotnak, Francis M.</creator><creator>Bertino, Joseph R.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19931215</creationdate><title>Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation</title><author>Dicker, Adam P. ; Waltham, Mark C. ; Volkenandt, Matthias ; Schweitzer, Barry I. ; Otter, Glenys M. ; Schmid, Franz a. ; Sirotnak, Francis M. ; Bertino, Joseph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-3490a69231c8f3e7442644c73914ced454631d3f246cecdd1fce155af2c210363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Active sites</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cell lines</topic><topic>Chromatography, Affinity</topic><topic>Complementary DNA</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>DNA, Neoplasm - chemistry</topic><topic>DNA, Neoplasm - isolation &amp; purification</topic><topic>Drug Resistance - genetics</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Folic acid antagonists</topic><topic>General aspects</topic><topic>Genetic mutation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Leukemia</topic><topic>Leukemia L1210 - drug therapy</topic><topic>Leukemia L1210 - enzymology</topic><topic>Leukemia L1210 - genetics</topic><topic>Medical sciences</topic><topic>Methotrexate - therapeutic use</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>NADP - metabolism</topic><topic>Pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Point Mutation</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Conformation</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - isolation &amp; purification</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Time Factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dicker, Adam P.</creatorcontrib><creatorcontrib>Waltham, Mark C.</creatorcontrib><creatorcontrib>Volkenandt, Matthias</creatorcontrib><creatorcontrib>Schweitzer, Barry I.</creatorcontrib><creatorcontrib>Otter, Glenys M.</creatorcontrib><creatorcontrib>Schmid, Franz a.</creatorcontrib><creatorcontrib>Sirotnak, Francis M.</creatorcontrib><creatorcontrib>Bertino, Joseph R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dicker, Adam P.</au><au>Waltham, Mark C.</au><au>Volkenandt, Matthias</au><au>Schweitzer, Barry I.</au><au>Otter, Glenys M.</au><au>Schmid, Franz a.</au><au>Sirotnak, Francis M.</au><au>Bertino, Joseph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-12-15</date><risdate>1993</risdate><volume>90</volume><issue>24</issue><spage>11797</spage><epage>11801</epage><pages>11797-11801</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>A series of methotrexate (MTX)-resistant L1210 leukemia murine ascites tumors were developed in vivo and analyzed for drug resistance. Three of 20 tumors studied expressed an altered dihydrofolate reductase (DHFR) and each was identical, having a C to T base transition at nucleotide 46 in the DHFR gene as demonstrated by PCR and direct sequencing. This transition results in a Gly to Trp substitution at amino acid 15 of the enzyme. Purified altered enzyme displays significantly lower binding affinity for the antifolates MTX, trimetrexate, edatrexate, and trimethoprim with respective Kivalues 165-, 76-, 30-, and 28-fold higher than values obtained for enzyme isolated from parental tumor (wild-type enzyme). Substrate (dihydrofolate) and cofactor (NADPH) binding is also diminished for the mutant enzyme, although to a lesser extent (17.3- and 3.6-fold higher Km, respectively). Gly-15 is highly conserved for all vertebrate species of DHFR but has no known interaction(s), either directly or indirectly, with bound cofactor, substrate, or inhibitor. Protein molecular modeling reveals that the affected residue is 9-12 Å away from the enzyme active site and located in a region analogous to the mobile Met-20 loop domain characterized for Escherichia coli DHFR.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8265628</pmid><doi>10.1073/pnas.90.24.11797</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-12, Vol.90 (24), p.11797-11801
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_90_24_11797
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Amino Acid Sequence
Amino acids
Animals
Antineoplastic agents
Base Sequence
Binding Sites
Biochemistry
Biological and medical sciences
Cell lines
Chromatography, Affinity
Complementary DNA
DNA
DNA Primers
DNA, Neoplasm - chemistry
DNA, Neoplasm - isolation & purification
Drug Resistance - genetics
Enzyme Stability
Enzymes
Escherichia coli - enzymology
Folic acid antagonists
General aspects
Genetic mutation
Humans
Kinetics
Leukemia
Leukemia L1210 - drug therapy
Leukemia L1210 - enzymology
Leukemia L1210 - genetics
Medical sciences
Methotrexate - therapeutic use
Mice
Models, Molecular
Molecular Sequence Data
NADP - metabolism
Pharmacology
Pharmacology. Drug treatments
Point Mutation
Polymerase Chain Reaction
Protein Conformation
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - isolation & purification
Tetrahydrofolate Dehydrogenase - metabolism
Time Factors
Tumors
title Methotrexate Resistance in an in vivo Mouse Tumor Due to a Non-Active-Site Dihydrofolate Reductase Mutation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methotrexate%20Resistance%20in%20an%20in%20vivo%20Mouse%20Tumor%20Due%20to%20a%20Non-Active-Site%20Dihydrofolate%20Reductase%20Mutation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dicker,%20Adam%20P.&rft.date=1993-12-15&rft.volume=90&rft.issue=24&rft.spage=11797&rft.epage=11801&rft.pages=11797-11801&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.24.11797&rft_dat=%3Cjstor_pnas_%3E2363550%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201278428&rft_id=info:pmid/8265628&rft_jstor_id=2363550&rfr_iscdi=true