Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength

Structure, biomechanical competence, and incremental NMR line broadening (R'2) of water in the intertrabecular spaces of cancellous bone were examined on 22 cylindrical specimens from the lumbar vertebral bodies of 16 human subjects 24-86 years old (mean, 60 years old). A strong association (r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-11, Vol.90 (21), p.10250-10254
Hauptverfasser: Chung, H., Wehrli, F. W., Williams, J. L., Kugelmass, S. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10254
container_issue 21
container_start_page 10250
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Chung, H.
Wehrli, F. W.
Williams, J. L.
Kugelmass, S. D.
description Structure, biomechanical competence, and incremental NMR line broadening (R'2) of water in the intertrabecular spaces of cancellous bone were examined on 22 cylindrical specimens from the lumbar vertebral bodies of 16 human subjects 24-86 years old (mean, 60 years old). A strong association (r = 0.91; P < 0.0001) was found between Young's modulus of elasticity and R'2 for a wide range of values corresponding to cancellous bone of very different morphologic composition. NMR line broadening is caused by the inhomogeneity of the magnetic field induced as a consequence of the coexistence of two adjacent phases of different diamagnetic susceptibility-i.e., mineralized bone and water in the marrow spaces. Structural analyses performed by means of NMR microscopy and digital image processing indicated that the variation in R'2 is closely related to the trabecular microstructure. Mean trabecular plate density measured along the direction of the magnetic field was found to play a major role in predicting R'2 (r = 0.74; P < 0.0001). This behavior was confirmed when the plate density was varied in individual specimens, which was achieved by rotating the specimen, making use of the bone's structural anisotropy. It is concluded that the NMR transverse relaxation rate in human cancellous bone of the spine is significantly determined by trabecular structural parameters relevant to biomechanical strength. The results further underscore the important role played by the transverse trabeculae in contributing to cancellous bone strength. The work has implications on possible in vivo use of quantitative magnetic resonance for the assessment of fracture risk in osteoporotic patients.
doi_str_mv 10.1073/pnas.90.21.10250
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_90_21_10250_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2363441</jstor_id><sourcerecordid>2363441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-3042f0fa253980a7975af2bb46d2cc094d02eb24c1c8a7c51e95448d28ac72353</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEKkvhzgFEhCrEobuMv2Jb4tJWfEkFpFIuXCzHmXSzyjpb2yntf0_SDavCAU7W-P3ejMcvy54SWBCQ7M3G27jQsKBkqKmAe9mMgCbzgmu4n80AqJwrTvnD7FGMKwDQQsFetqco41SJWfbjDFubms7HZbPJjzH9RPT5l89n-XmwPl5hiJiPzPUtdThel-j61ob8uPOYHwW3bBK61Ac8zK2v8m8poL9Iy8fZg9q2EZ9M5372_f2785OP89OvHz6dHJ3OnRA8zRlwWkNtqWBagZVaClvTsuRFRZ0DzSugWFLuiFNWOkFQC85VRZV1kjLB9rO3276bvlxj5dCnYFuzCc3ahhvT2cb8qfhmaS66K8OlFHSwv5rsobvsMSazbqLDtrUeuz4aWUBBOCX_BUlRKK1VMYAv_wJXXR_88AeGAqGiUEoOEGwhF7oYA9a7BxMwY7ZmzNZoMJSY22wHy_O7i-4MU5iDfjDpNjrb1kOArok7jClRaDnu8XrCxgG_1TuDTN23bcLrNKAv_o0OxLMtsYqpCzuEsoJxTtgvKcfOeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201256887</pqid></control><display><type>article</type><title>Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chung, H. ; Wehrli, F. W. ; Williams, J. L. ; Kugelmass, S. D.</creator><creatorcontrib>Chung, H. ; Wehrli, F. W. ; Williams, J. L. ; Kugelmass, S. D.</creatorcontrib><description>Structure, biomechanical competence, and incremental NMR line broadening (R'2) of water in the intertrabecular spaces of cancellous bone were examined on 22 cylindrical specimens from the lumbar vertebral bodies of 16 human subjects 24-86 years old (mean, 60 years old). A strong association (r = 0.91; P &lt; 0.0001) was found between Young's modulus of elasticity and R'2 for a wide range of values corresponding to cancellous bone of very different morphologic composition. NMR line broadening is caused by the inhomogeneity of the magnetic field induced as a consequence of the coexistence of two adjacent phases of different diamagnetic susceptibility-i.e., mineralized bone and water in the marrow spaces. Structural analyses performed by means of NMR microscopy and digital image processing indicated that the variation in R'2 is closely related to the trabecular microstructure. Mean trabecular plate density measured along the direction of the magnetic field was found to play a major role in predicting R'2 (r = 0.74; P &lt; 0.0001). This behavior was confirmed when the plate density was varied in individual specimens, which was achieved by rotating the specimen, making use of the bone's structural anisotropy. It is concluded that the NMR transverse relaxation rate in human cancellous bone of the spine is significantly determined by trabecular structural parameters relevant to biomechanical strength. The results further underscore the important role played by the transverse trabeculae in contributing to cancellous bone strength. The work has implications on possible in vivo use of quantitative magnetic resonance for the assessment of fracture risk in osteoporotic patients.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.21.10250</identifier><identifier>PMID: 8234285</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Anatomy &amp; physiology ; Biological and medical sciences ; Bone and Bones - anatomy &amp; histology ; Bone and Bones - physiology ; Bone density ; Bone marrow ; Bone Marrow - anatomy &amp; histology ; Bone strength ; Bones ; Density ; Elasticity ; Humans ; Inhomogeneity ; Investigative techniques, diagnostic techniques (general aspects) ; Lumbar Vertebrae - anatomy &amp; histology ; Lumbar Vertebrae - physiology ; Magnetic fields ; Magnetic Resonance Spectroscopy - methods ; Male ; Medical sciences ; Middle Aged ; Models, Biological ; NMR ; Nuclear magnetic resonance ; Osteoarticular system. Muscles ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Pixels ; Skeletal system ; Space life sciences ; Specimens ; Tensile Strength ; Youngs modulus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-11, Vol.90 (21), p.10250-10254</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 1, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-3042f0fa253980a7975af2bb46d2cc094d02eb24c1c8a7c51e95448d28ac72353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2363441$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2363441$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,309,310,314,723,776,780,785,786,799,881,23910,23911,25119,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3856971$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8234285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, H.</creatorcontrib><creatorcontrib>Wehrli, F. W.</creatorcontrib><creatorcontrib>Williams, J. L.</creatorcontrib><creatorcontrib>Kugelmass, S. D.</creatorcontrib><title>Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Structure, biomechanical competence, and incremental NMR line broadening (R'2) of water in the intertrabecular spaces of cancellous bone were examined on 22 cylindrical specimens from the lumbar vertebral bodies of 16 human subjects 24-86 years old (mean, 60 years old). A strong association (r = 0.91; P &lt; 0.0001) was found between Young's modulus of elasticity and R'2 for a wide range of values corresponding to cancellous bone of very different morphologic composition. NMR line broadening is caused by the inhomogeneity of the magnetic field induced as a consequence of the coexistence of two adjacent phases of different diamagnetic susceptibility-i.e., mineralized bone and water in the marrow spaces. Structural analyses performed by means of NMR microscopy and digital image processing indicated that the variation in R'2 is closely related to the trabecular microstructure. Mean trabecular plate density measured along the direction of the magnetic field was found to play a major role in predicting R'2 (r = 0.74; P &lt; 0.0001). This behavior was confirmed when the plate density was varied in individual specimens, which was achieved by rotating the specimen, making use of the bone's structural anisotropy. It is concluded that the NMR transverse relaxation rate in human cancellous bone of the spine is significantly determined by trabecular structural parameters relevant to biomechanical strength. The results further underscore the important role played by the transverse trabeculae in contributing to cancellous bone strength. The work has implications on possible in vivo use of quantitative magnetic resonance for the assessment of fracture risk in osteoporotic patients.</description><subject>Anatomy &amp; physiology</subject><subject>Biological and medical sciences</subject><subject>Bone and Bones - anatomy &amp; histology</subject><subject>Bone and Bones - physiology</subject><subject>Bone density</subject><subject>Bone marrow</subject><subject>Bone Marrow - anatomy &amp; histology</subject><subject>Bone strength</subject><subject>Bones</subject><subject>Density</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Inhomogeneity</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Lumbar Vertebrae - anatomy &amp; histology</subject><subject>Lumbar Vertebrae - physiology</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Osteoarticular system. Muscles</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Pixels</subject><subject>Skeletal system</subject><subject>Space life sciences</subject><subject>Specimens</subject><subject>Tensile Strength</subject><subject>Youngs modulus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEKkvhzgFEhCrEobuMv2Jb4tJWfEkFpFIuXCzHmXSzyjpb2yntf0_SDavCAU7W-P3ejMcvy54SWBCQ7M3G27jQsKBkqKmAe9mMgCbzgmu4n80AqJwrTvnD7FGMKwDQQsFetqco41SJWfbjDFubms7HZbPJjzH9RPT5l89n-XmwPl5hiJiPzPUtdThel-j61ob8uPOYHwW3bBK61Ac8zK2v8m8poL9Iy8fZg9q2EZ9M5372_f2785OP89OvHz6dHJ3OnRA8zRlwWkNtqWBagZVaClvTsuRFRZ0DzSugWFLuiFNWOkFQC85VRZV1kjLB9rO3276bvlxj5dCnYFuzCc3ahhvT2cb8qfhmaS66K8OlFHSwv5rsobvsMSazbqLDtrUeuz4aWUBBOCX_BUlRKK1VMYAv_wJXXR_88AeGAqGiUEoOEGwhF7oYA9a7BxMwY7ZmzNZoMJSY22wHy_O7i-4MU5iDfjDpNjrb1kOArok7jClRaDnu8XrCxgG_1TuDTN23bcLrNKAv_o0OxLMtsYqpCzuEsoJxTtgvKcfOeg</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Chung, H.</creator><creator>Wehrli, F. W.</creator><creator>Williams, J. L.</creator><creator>Kugelmass, S. D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19931101</creationdate><title>Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength</title><author>Chung, H. ; Wehrli, F. W. ; Williams, J. L. ; Kugelmass, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-3042f0fa253980a7975af2bb46d2cc094d02eb24c1c8a7c51e95448d28ac72353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Anatomy &amp; physiology</topic><topic>Biological and medical sciences</topic><topic>Bone and Bones - anatomy &amp; histology</topic><topic>Bone and Bones - physiology</topic><topic>Bone density</topic><topic>Bone marrow</topic><topic>Bone Marrow - anatomy &amp; histology</topic><topic>Bone strength</topic><topic>Bones</topic><topic>Density</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Inhomogeneity</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Lumbar Vertebrae - anatomy &amp; histology</topic><topic>Lumbar Vertebrae - physiology</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Osteoarticular system. Muscles</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Pixels</topic><topic>Skeletal system</topic><topic>Space life sciences</topic><topic>Specimens</topic><topic>Tensile Strength</topic><topic>Youngs modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, H.</creatorcontrib><creatorcontrib>Wehrli, F. W.</creatorcontrib><creatorcontrib>Williams, J. L.</creatorcontrib><creatorcontrib>Kugelmass, S. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, H.</au><au>Wehrli, F. W.</au><au>Williams, J. L.</au><au>Kugelmass, S. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-11-01</date><risdate>1993</risdate><volume>90</volume><issue>21</issue><spage>10250</spage><epage>10254</epage><pages>10250-10254</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Structure, biomechanical competence, and incremental NMR line broadening (R'2) of water in the intertrabecular spaces of cancellous bone were examined on 22 cylindrical specimens from the lumbar vertebral bodies of 16 human subjects 24-86 years old (mean, 60 years old). A strong association (r = 0.91; P &lt; 0.0001) was found between Young's modulus of elasticity and R'2 for a wide range of values corresponding to cancellous bone of very different morphologic composition. NMR line broadening is caused by the inhomogeneity of the magnetic field induced as a consequence of the coexistence of two adjacent phases of different diamagnetic susceptibility-i.e., mineralized bone and water in the marrow spaces. Structural analyses performed by means of NMR microscopy and digital image processing indicated that the variation in R'2 is closely related to the trabecular microstructure. Mean trabecular plate density measured along the direction of the magnetic field was found to play a major role in predicting R'2 (r = 0.74; P &lt; 0.0001). This behavior was confirmed when the plate density was varied in individual specimens, which was achieved by rotating the specimen, making use of the bone's structural anisotropy. It is concluded that the NMR transverse relaxation rate in human cancellous bone of the spine is significantly determined by trabecular structural parameters relevant to biomechanical strength. The results further underscore the important role played by the transverse trabeculae in contributing to cancellous bone strength. The work has implications on possible in vivo use of quantitative magnetic resonance for the assessment of fracture risk in osteoporotic patients.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8234285</pmid><doi>10.1073/pnas.90.21.10250</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-11, Vol.90 (21), p.10250-10254
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_90_21_10250_fulltext
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anatomy & physiology
Biological and medical sciences
Bone and Bones - anatomy & histology
Bone and Bones - physiology
Bone density
Bone marrow
Bone Marrow - anatomy & histology
Bone strength
Bones
Density
Elasticity
Humans
Inhomogeneity
Investigative techniques, diagnostic techniques (general aspects)
Lumbar Vertebrae - anatomy & histology
Lumbar Vertebrae - physiology
Magnetic fields
Magnetic Resonance Spectroscopy - methods
Male
Medical sciences
Middle Aged
Models, Biological
NMR
Nuclear magnetic resonance
Osteoarticular system. Muscles
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Pixels
Skeletal system
Space life sciences
Specimens
Tensile Strength
Youngs modulus
title Relationship Between NMR Transverse Relaxation, Trabecular Bone Architecture, and Strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20Between%20NMR%20Transverse%20Relaxation,%20Trabecular%20Bone%20Architecture,%20and%20Strength&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chung,%20H.&rft.date=1993-11-01&rft.volume=90&rft.issue=21&rft.spage=10250&rft.epage=10254&rft.pages=10250-10254&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.21.10250&rft_dat=%3Cjstor_pnas_%3E2363441%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201256887&rft_id=info:pmid/8234285&rft_jstor_id=2363441&rfr_iscdi=true