Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription

While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.10696-10700
Hauptverfasser: Sweder, K.S. (Stanford University, Stanford, CA), Hanawalt, P.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10700
container_issue 22
container_start_page 10696
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 89
creator Sweder, K.S. (Stanford University, Stanford, CA)
Hanawalt, P.C
description While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.
doi_str_mv 10.1073/pnas.89.22.10696
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_89_22_10696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361977</jstor_id><sourcerecordid>2361977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso67h6L6IYRMSbGdOTNB_gjSx-wYKC7nXIpOlMhrapSSvOP_HneuqMo-uFXiXhfd7zkXOK4n5JVyWV7MXQ27xSegWAb6HFjWJRUl0uBdf0ZrGgFORSceC3izs57yilulL0rDgrOVMgxKL4_jH5xiffj8G2JPnBhkRiQ9zetXE9jbb3ZNin0IU64LUOnU-ZhJ6MW0_GZPvsUlj7muT5Uc9WSzYeUWT23uaRuG2KXcyx85nMyNDajOEwSia1H3xfY3YS-1O4YQyxv1vcamyb_b3jeV5cvXn9-eLd8vLD2_cXry6XrpJsXDLlgFbag5BOA9QWHDRcl57LNRVCOMHAs5oBVYAG4daOQu2korVjaGXnxctD3GFad752WEuyrRmwZZv2Jtpgrit92JpN_GoqyqlC-7OjPcUvk8-j6UJ2vm3x4-KUjWQMZAX8v2ApGFeVBASf_AXu4pR6_AMDtARVqmqG6AFyKeaMIzwVXFIzb4aZN8MobQDMz81Ay6M_G_1tOKwC6k-Pus3Otg0Ow4V8wjjXQuo58-MjNif4pV5P9PzfhGmmth39txHRhwd0l8eYTiwwUWopUX5wkBsbjd0kLOfqk8ZZUi3ZDwRW7tA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201281852</pqid></control><display><type>article</type><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</creator><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</creatorcontrib><description>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.10696</identifier><identifier>PMID: 1438266</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Biological and medical sciences ; Cells ; Cellular biology ; Centromere - physiology ; Cephalopelvic disproportion ; CHROMOSOME ; Chromosomes ; Chromosomes, Fungal ; CROMOSOMAS ; DNA ; DNA Repair ; DNA, Fungal - genetics ; DNA, Fungal - isolation &amp; purification ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Fungal ; Kinetics ; LEVADURA ; LEVURE ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; PLASMIDE ; PLASMIDIOS ; Plasmids ; Pyrimidine Dimers - metabolism ; Restriction Mapping ; RNA ; RNA Polymerase II - genetics ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - radiation effects ; Transcription, Genetic ; TRANSFERASAS ; TRANSFERASE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; Ultraviolet Rays ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10696-10700</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4496792$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1438266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA)</creatorcontrib><creatorcontrib>Hanawalt, P.C</creatorcontrib><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</description><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centromere - physiology</subject><subject>Cephalopelvic disproportion</subject><subject>CHROMOSOME</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal</subject><subject>CROMOSOMAS</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - isolation &amp; purification</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Kinetics</subject><subject>LEVADURA</subject><subject>LEVURE</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>PLASMIDE</subject><subject>PLASMIDIOS</subject><subject>Plasmids</subject><subject>Pyrimidine Dimers - metabolism</subject><subject>Restriction Mapping</subject><subject>RNA</subject><subject>RNA Polymerase II - genetics</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Transcription, Genetic</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>Ultraviolet Rays</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2L1DAUhoso67h6L6IYRMSbGdOTNB_gjSx-wYKC7nXIpOlMhrapSSvOP_HneuqMo-uFXiXhfd7zkXOK4n5JVyWV7MXQ27xSegWAb6HFjWJRUl0uBdf0ZrGgFORSceC3izs57yilulL0rDgrOVMgxKL4_jH5xiffj8G2JPnBhkRiQ9zetXE9jbb3ZNin0IU64LUOnU-ZhJ6MW0_GZPvsUlj7muT5Uc9WSzYeUWT23uaRuG2KXcyx85nMyNDajOEwSia1H3xfY3YS-1O4YQyxv1vcamyb_b3jeV5cvXn9-eLd8vLD2_cXry6XrpJsXDLlgFbag5BOA9QWHDRcl57LNRVCOMHAs5oBVYAG4daOQu2korVjaGXnxctD3GFad752WEuyrRmwZZv2Jtpgrit92JpN_GoqyqlC-7OjPcUvk8-j6UJ2vm3x4-KUjWQMZAX8v2ApGFeVBASf_AXu4pR6_AMDtARVqmqG6AFyKeaMIzwVXFIzb4aZN8MobQDMz81Ay6M_G_1tOKwC6k-Pus3Otg0Ow4V8wjjXQuo58-MjNif4pV5P9PzfhGmmth39txHRhwd0l8eYTiwwUWopUX5wkBsbjd0kLOfqk8ZZUi3ZDwRW7tA</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Sweder, K.S. (Stanford University, Stanford, CA)</creator><creator>Hanawalt, P.C</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><author>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centromere - physiology</topic><topic>Cephalopelvic disproportion</topic><topic>CHROMOSOME</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal</topic><topic>CROMOSOMAS</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - isolation &amp; purification</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Kinetics</topic><topic>LEVADURA</topic><topic>LEVURE</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>PLASMIDE</topic><topic>PLASMIDIOS</topic><topic>Plasmids</topic><topic>Pyrimidine Dimers - metabolism</topic><topic>Restriction Mapping</topic><topic>RNA</topic><topic>RNA Polymerase II - genetics</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Transcription, Genetic</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>Ultraviolet Rays</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA)</creatorcontrib><creatorcontrib>Hanawalt, P.C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweder, K.S. (Stanford University, Stanford, CA)</au><au>Hanawalt, P.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>10696</spage><epage>10700</epage><pages>10696-10700</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1438266</pmid><doi>10.1073/pnas.89.22.10696</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10696-10700
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_89_22_10696
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological and medical sciences
Cells
Cellular biology
Centromere - physiology
Cephalopelvic disproportion
CHROMOSOME
Chromosomes
Chromosomes, Fungal
CROMOSOMAS
DNA
DNA Repair
DNA, Fungal - genetics
DNA, Fungal - isolation & purification
Enzymes
Fundamental and applied biological sciences. Psychology
Genes
Genes, Fungal
Kinetics
LEVADURA
LEVURE
Molecular and cellular biology
Molecular genetics
Mutagenesis. Repair
PLASMIDE
PLASMIDIOS
Plasmids
Pyrimidine Dimers - metabolism
Restriction Mapping
RNA
RNA Polymerase II - genetics
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - radiation effects
Transcription, Genetic
TRANSFERASAS
TRANSFERASE
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
Ultraviolet Rays
Yeasts
title Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20repair%20of%20cyclobutane%20pyrimidine%20dimers%20in%20the%20transcribed%20strand%20of%20a%20gene%20in%20yeast%20chromosomes%20and%20plasmids%20is%20dependent%20on%20transcription&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sweder,%20K.S.%20(Stanford%20University,%20Stanford,%20CA)&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=10696&rft.epage=10700&rft.pages=10696-10700&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.10696&rft_dat=%3Cjstor_pnas_%3E2361977%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201281852&rft_id=info:pmid/1438266&rft_jstor_id=2361977&rfr_iscdi=true