Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.10696-10700 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10700 |
---|---|
container_issue | 22 |
container_start_page | 10696 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 89 |
creator | Sweder, K.S. (Stanford University, Stanford, CA) Hanawalt, P.C |
description | While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast. |
doi_str_mv | 10.1073/pnas.89.22.10696 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_89_22_10696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361977</jstor_id><sourcerecordid>2361977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso67h6L6IYRMSbGdOTNB_gjSx-wYKC7nXIpOlMhrapSSvOP_HneuqMo-uFXiXhfd7zkXOK4n5JVyWV7MXQ27xSegWAb6HFjWJRUl0uBdf0ZrGgFORSceC3izs57yilulL0rDgrOVMgxKL4_jH5xiffj8G2JPnBhkRiQ9zetXE9jbb3ZNin0IU64LUOnU-ZhJ6MW0_GZPvsUlj7muT5Uc9WSzYeUWT23uaRuG2KXcyx85nMyNDajOEwSia1H3xfY3YS-1O4YQyxv1vcamyb_b3jeV5cvXn9-eLd8vLD2_cXry6XrpJsXDLlgFbag5BOA9QWHDRcl57LNRVCOMHAs5oBVYAG4daOQu2korVjaGXnxctD3GFad752WEuyrRmwZZv2Jtpgrit92JpN_GoqyqlC-7OjPcUvk8-j6UJ2vm3x4-KUjWQMZAX8v2ApGFeVBASf_AXu4pR6_AMDtARVqmqG6AFyKeaMIzwVXFIzb4aZN8MobQDMz81Ay6M_G_1tOKwC6k-Pus3Otg0Ow4V8wjjXQuo58-MjNif4pV5P9PzfhGmmth39txHRhwd0l8eYTiwwUWopUX5wkBsbjd0kLOfqk8ZZUi3ZDwRW7tA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201281852</pqid></control><display><type>article</type><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</creator><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</creatorcontrib><description>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.10696</identifier><identifier>PMID: 1438266</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Biological and medical sciences ; Cells ; Cellular biology ; Centromere - physiology ; Cephalopelvic disproportion ; CHROMOSOME ; Chromosomes ; Chromosomes, Fungal ; CROMOSOMAS ; DNA ; DNA Repair ; DNA, Fungal - genetics ; DNA, Fungal - isolation & purification ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Fungal ; Kinetics ; LEVADURA ; LEVURE ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; PLASMIDE ; PLASMIDIOS ; Plasmids ; Pyrimidine Dimers - metabolism ; Restriction Mapping ; RNA ; RNA Polymerase II - genetics ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - radiation effects ; Transcription, Genetic ; TRANSFERASAS ; TRANSFERASE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; Ultraviolet Rays ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10696-10700</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4496792$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1438266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA)</creatorcontrib><creatorcontrib>Hanawalt, P.C</creatorcontrib><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</description><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centromere - physiology</subject><subject>Cephalopelvic disproportion</subject><subject>CHROMOSOME</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal</subject><subject>CROMOSOMAS</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - isolation & purification</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Kinetics</subject><subject>LEVADURA</subject><subject>LEVURE</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>PLASMIDE</subject><subject>PLASMIDIOS</subject><subject>Plasmids</subject><subject>Pyrimidine Dimers - metabolism</subject><subject>Restriction Mapping</subject><subject>RNA</subject><subject>RNA Polymerase II - genetics</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Transcription, Genetic</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>Ultraviolet Rays</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2L1DAUhoso67h6L6IYRMSbGdOTNB_gjSx-wYKC7nXIpOlMhrapSSvOP_HneuqMo-uFXiXhfd7zkXOK4n5JVyWV7MXQ27xSegWAb6HFjWJRUl0uBdf0ZrGgFORSceC3izs57yilulL0rDgrOVMgxKL4_jH5xiffj8G2JPnBhkRiQ9zetXE9jbb3ZNin0IU64LUOnU-ZhJ6MW0_GZPvsUlj7muT5Uc9WSzYeUWT23uaRuG2KXcyx85nMyNDajOEwSia1H3xfY3YS-1O4YQyxv1vcamyb_b3jeV5cvXn9-eLd8vLD2_cXry6XrpJsXDLlgFbag5BOA9QWHDRcl57LNRVCOMHAs5oBVYAG4daOQu2korVjaGXnxctD3GFad752WEuyrRmwZZv2Jtpgrit92JpN_GoqyqlC-7OjPcUvk8-j6UJ2vm3x4-KUjWQMZAX8v2ApGFeVBASf_AXu4pR6_AMDtARVqmqG6AFyKeaMIzwVXFIzb4aZN8MobQDMz81Ay6M_G_1tOKwC6k-Pus3Otg0Ow4V8wjjXQuo58-MjNif4pV5P9PzfhGmmth39txHRhwd0l8eYTiwwUWopUX5wkBsbjd0kLOfqk8ZZUi3ZDwRW7tA</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Sweder, K.S. (Stanford University, Stanford, CA)</creator><creator>Hanawalt, P.C</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</title><author>Sweder, K.S. (Stanford University, Stanford, CA) ; Hanawalt, P.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-38c2059e267c922da2c2f491e47b0666c632e3d320825736cbc02dc780dc3c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centromere - physiology</topic><topic>Cephalopelvic disproportion</topic><topic>CHROMOSOME</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal</topic><topic>CROMOSOMAS</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - isolation & purification</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Kinetics</topic><topic>LEVADURA</topic><topic>LEVURE</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>PLASMIDE</topic><topic>PLASMIDIOS</topic><topic>Plasmids</topic><topic>Pyrimidine Dimers - metabolism</topic><topic>Restriction Mapping</topic><topic>RNA</topic><topic>RNA Polymerase II - genetics</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Transcription, Genetic</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>Ultraviolet Rays</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweder, K.S. (Stanford University, Stanford, CA)</creatorcontrib><creatorcontrib>Hanawalt, P.C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweder, K.S. (Stanford University, Stanford, CA)</au><au>Hanawalt, P.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>10696</spage><epage>10700</epage><pages>10696-10700</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1438266</pmid><doi>10.1073/pnas.89.22.10696</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.10696-10700 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_89_22_10696 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological and medical sciences Cells Cellular biology Centromere - physiology Cephalopelvic disproportion CHROMOSOME Chromosomes Chromosomes, Fungal CROMOSOMAS DNA DNA Repair DNA, Fungal - genetics DNA, Fungal - isolation & purification Enzymes Fundamental and applied biological sciences. Psychology Genes Genes, Fungal Kinetics LEVADURA LEVURE Molecular and cellular biology Molecular genetics Mutagenesis. Repair PLASMIDE PLASMIDIOS Plasmids Pyrimidine Dimers - metabolism Restriction Mapping RNA RNA Polymerase II - genetics SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - radiation effects Transcription, Genetic TRANSFERASAS TRANSFERASE TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE Ultraviolet Rays Yeasts |
title | Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20repair%20of%20cyclobutane%20pyrimidine%20dimers%20in%20the%20transcribed%20strand%20of%20a%20gene%20in%20yeast%20chromosomes%20and%20plasmids%20is%20dependent%20on%20transcription&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sweder,%20K.S.%20(Stanford%20University,%20Stanford,%20CA)&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=10696&rft.epage=10700&rft.pages=10696-10700&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.10696&rft_dat=%3Cjstor_pnas_%3E2361977%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201281852&rft_id=info:pmid/1438266&rft_jstor_id=2361977&rfr_iscdi=true |