Identification of Monoclonal Antibody Epitopes and Critical Residues for Rhinovirus Binding in Domain 1 of Intercellular Adhesion Molecule 1

Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinoviruses (HRVs) and the adhesion ligand of lymphocyte function-associated antigen 1. Analysis of a series of chimeric exchanges between human and murine ICAM-1 shows that two distinct epitopes recogn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1991-09, Vol.88 (18), p.7993-7997
Hauptverfasser: McClelland, Alan, DeBear, Joanna, Yost, Susan Connolly, Meyer, Ann M., Marlor, Christopher W., Greve, Jeffrey M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinoviruses (HRVs) and the adhesion ligand of lymphocyte function-associated antigen 1. Analysis of a series of chimeric exchanges between human and murine ICAM-1 shows that two distinct epitopes recognized by monoclonal antibodies that block rhinovirus attachment and cell adhesion map to the N-terminal first domain of ICAM-1. Furthermore the specificity for HRV binding is entirely contained within the first 88 amino acids. Mutagenesis of the four sites of N-linked glycosylation within the second domain shows that carbohydrate is not involved in virus recognition. Homologue replacement mutagenesis localizes the epitopes for virus-blocking antibodies to two regions of domain 1 predicted to form β strand D and the loop between the F and G strands of an immunoglobulinfold structure. Analysis of virus binding to the mutants predicts a large surface of contact between HRV and ICAM-1 domain 1 but shows that the regions most important for virus binding are coincident with the monoclonal antibody epitopes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.18.7993