Betaine synthesis in chenopods: localization in chloroplasts

Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. Natl. Acad. Sci. U.S.A.; (United States) 1985-06, Vol.82 (11), p.3678-3682
Hauptverfasser: Hanson, A.D, May, A.M, Grumet, R, Bode, J, Jamieson, G.C, Rhodes, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3682
container_issue 11
container_start_page 3678
container_title Proc. Natl. Acad. Sci. U.S.A.; (United States)
container_volume 82
creator Hanson, A.D
May, A.M
Grumet, R
Bode, J
Jamieson, G.C
Rhodes, D
description Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.
doi_str_mv 10.1073/pnas.82.11.3678
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_82_11_3678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25732</jstor_id><sourcerecordid>25732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS1ERUNgjcQCRQipq0n9GL8QLKCiBakSC-jacjyexpVjD74Oovx6Jpo0bTesvDjfPedeH4ReEbwkWLLTIVlYKrokZMmEVE_QjGBNGtFq_BTNMKayUS1tj9FzgBuMseYKP0PHRHDNuNAz9OGzrzYkv4DbVNceAixCWri1T3nIHbxfxOxsDH9tDTlNUswlD9FChRfoqLcR_Mv9O0dX519-nn1tLr9ffDv7dNk4zkRtuMC67zi1lDrpyUo5KaVYWU6YIq2mne005ZgxIlaUd5IKQTrCJZfK867zbI4-Tr7DdrXxnfOpFhvNUMLGlluTbTCPlRTW5jr_NkxLNRrP0dtpPkMNBlyo3q1dTsm7agRWfNxjhE72ISX_2nqoZhPA-Rht8nkLRjLGMaekHcnTiXQlAxTfHzYh2OxqMbtajKKGELOrZZx48_CAe37fwwi82wMWxv_ui00uwIHTlGrWigc-u4A79VHQyX8B029jrP5PHcnXE3kDNZcDSrlk9F7sbTb2uoyrXP1QgnKqW_YPljm-nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733505214</pqid></control><display><type>article</type><title>Betaine synthesis in chenopods: localization in chloroplasts</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D</creator><creatorcontrib>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D ; Michigan State Univ., East Lansing</creatorcontrib><description>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.82.11.3678</identifier><identifier>PMID: 16593569</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; 550301 - Cytology- Tracer Techniques ; ALCOHOLS ; AMINES ; AMINO ACIDS ; AMMONIUM COMPOUNDS ; BASIC BIOLOGICAL SCIENCES ; BETA VULGARIS ; BETAINE ; Betaines ; Biological and medical sciences ; BIOLOGICAL LOCALIZATION ; Biological Sciences: Botany ; BIOLOGICAL STRESS ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; CARBON 14 COMPOUNDS ; CARBOXYLIC ACIDS ; CELL CONSTITUENTS ; CENTRIFUGATION ; CHEMICAL REACTIONS ; CHLOROPLASTS ; CHOLINE ; CULTIVAR ; CULTIVARES ; CULTIVARS ; DRUGS ; Enzymes ; FOOD ; Fundamental and applied biological sciences. Psychology ; HYDROXY COMPOUNDS ; LABELLED COMPOUNDS ; LEAVES ; LIPOTROPIC FACTORS ; Metabolism ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; OXIDATION ; Peas ; PISUM SATIVUM ; PLANT CELLS ; Plant physiology and development ; PLANTS ; PLASTE ; PLASTIDOS ; PLASTIDS ; Protoplasts ; QUATERNARY COMPOUNDS ; SEPARATION PROCESSES ; SPINACH ; SPINACIA OLERACEA ; SYNTHESIS ; VEGETABLES</subject><ispartof>Proc. Natl. Acad. Sci. U.S.A.; (United States), 1985-06, Vol.82 (11), p.3678-3682</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/82/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25732$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25732$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9229346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16593569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6085381$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanson, A.D</creatorcontrib><creatorcontrib>May, A.M</creatorcontrib><creatorcontrib>Grumet, R</creatorcontrib><creatorcontrib>Bode, J</creatorcontrib><creatorcontrib>Jamieson, G.C</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing</creatorcontrib><title>Betaine synthesis in chenopods: localization in chloroplasts</title><title>Proc. Natl. Acad. Sci. U.S.A.; (United States)</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>550301 - Cytology- Tracer Techniques</subject><subject>ALCOHOLS</subject><subject>AMINES</subject><subject>AMINO ACIDS</subject><subject>AMMONIUM COMPOUNDS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA VULGARIS</subject><subject>BETAINE</subject><subject>Betaines</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL LOCALIZATION</subject><subject>Biological Sciences: Botany</subject><subject>BIOLOGICAL STRESS</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>CARBON 14 COMPOUNDS</subject><subject>CARBOXYLIC ACIDS</subject><subject>CELL CONSTITUENTS</subject><subject>CENTRIFUGATION</subject><subject>CHEMICAL REACTIONS</subject><subject>CHLOROPLASTS</subject><subject>CHOLINE</subject><subject>CULTIVAR</subject><subject>CULTIVARES</subject><subject>CULTIVARS</subject><subject>DRUGS</subject><subject>Enzymes</subject><subject>FOOD</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HYDROXY COMPOUNDS</subject><subject>LABELLED COMPOUNDS</subject><subject>LEAVES</subject><subject>LIPOTROPIC FACTORS</subject><subject>Metabolism</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXIDATION</subject><subject>Peas</subject><subject>PISUM SATIVUM</subject><subject>PLANT CELLS</subject><subject>Plant physiology and development</subject><subject>PLANTS</subject><subject>PLASTE</subject><subject>PLASTIDOS</subject><subject>PLASTIDS</subject><subject>Protoplasts</subject><subject>QUATERNARY COMPOUNDS</subject><subject>SEPARATION PROCESSES</subject><subject>SPINACH</subject><subject>SPINACIA OLERACEA</subject><subject>SYNTHESIS</subject><subject>VEGETABLES</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS1ERUNgjcQCRQipq0n9GL8QLKCiBakSC-jacjyexpVjD74Oovx6Jpo0bTesvDjfPedeH4ReEbwkWLLTIVlYKrokZMmEVE_QjGBNGtFq_BTNMKayUS1tj9FzgBuMseYKP0PHRHDNuNAz9OGzrzYkv4DbVNceAixCWri1T3nIHbxfxOxsDH9tDTlNUswlD9FChRfoqLcR_Mv9O0dX519-nn1tLr9ffDv7dNk4zkRtuMC67zi1lDrpyUo5KaVYWU6YIq2mne005ZgxIlaUd5IKQTrCJZfK867zbI4-Tr7DdrXxnfOpFhvNUMLGlluTbTCPlRTW5jr_NkxLNRrP0dtpPkMNBlyo3q1dTsm7agRWfNxjhE72ISX_2nqoZhPA-Rht8nkLRjLGMaekHcnTiXQlAxTfHzYh2OxqMbtajKKGELOrZZx48_CAe37fwwi82wMWxv_ui00uwIHTlGrWigc-u4A79VHQyX8B029jrP5PHcnXE3kDNZcDSrlk9F7sbTb2uoyrXP1QgnKqW_YPljm-nA</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Hanson, A.D</creator><creator>May, A.M</creator><creator>Grumet, R</creator><creator>Bode, J</creator><creator>Jamieson, G.C</creator><creator>Rhodes, D</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19850601</creationdate><title>Betaine synthesis in chenopods: localization in chloroplasts</title><author>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>550301 - Cytology- Tracer Techniques</topic><topic>ALCOHOLS</topic><topic>AMINES</topic><topic>AMINO ACIDS</topic><topic>AMMONIUM COMPOUNDS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA VULGARIS</topic><topic>BETAINE</topic><topic>Betaines</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL LOCALIZATION</topic><topic>Biological Sciences: Botany</topic><topic>BIOLOGICAL STRESS</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>CARBON 14 COMPOUNDS</topic><topic>CARBOXYLIC ACIDS</topic><topic>CELL CONSTITUENTS</topic><topic>CENTRIFUGATION</topic><topic>CHEMICAL REACTIONS</topic><topic>CHLOROPLASTS</topic><topic>CHOLINE</topic><topic>CULTIVAR</topic><topic>CULTIVARES</topic><topic>CULTIVARS</topic><topic>DRUGS</topic><topic>Enzymes</topic><topic>FOOD</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HYDROXY COMPOUNDS</topic><topic>LABELLED COMPOUNDS</topic><topic>LEAVES</topic><topic>LIPOTROPIC FACTORS</topic><topic>Metabolism</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXIDATION</topic><topic>Peas</topic><topic>PISUM SATIVUM</topic><topic>PLANT CELLS</topic><topic>Plant physiology and development</topic><topic>PLANTS</topic><topic>PLASTE</topic><topic>PLASTIDOS</topic><topic>PLASTIDS</topic><topic>Protoplasts</topic><topic>QUATERNARY COMPOUNDS</topic><topic>SEPARATION PROCESSES</topic><topic>SPINACH</topic><topic>SPINACIA OLERACEA</topic><topic>SYNTHESIS</topic><topic>VEGETABLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, A.D</creatorcontrib><creatorcontrib>May, A.M</creatorcontrib><creatorcontrib>Grumet, R</creatorcontrib><creatorcontrib>Bode, J</creatorcontrib><creatorcontrib>Jamieson, G.C</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, A.D</au><au>May, A.M</au><au>Grumet, R</au><au>Bode, J</au><au>Jamieson, G.C</au><au>Rhodes, D</au><aucorp>Michigan State Univ., East Lansing</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Betaine synthesis in chenopods: localization in chloroplasts</atitle><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1985-06-01</date><risdate>1985</risdate><volume>82</volume><issue>11</issue><spage>3678</spage><epage>3682</epage><pages>3678-3682</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16593569</pmid><doi>10.1073/pnas.82.11.3678</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proc. Natl. Acad. Sci. U.S.A.; (United States), 1985-06, Vol.82 (11), p.3678-3682
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_82_11_3678
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 550201 - Biochemistry- Tracer Techniques
550301 - Cytology- Tracer Techniques
ALCOHOLS
AMINES
AMINO ACIDS
AMMONIUM COMPOUNDS
BASIC BIOLOGICAL SCIENCES
BETA VULGARIS
BETAINE
Betaines
Biological and medical sciences
BIOLOGICAL LOCALIZATION
Biological Sciences: Botany
BIOLOGICAL STRESS
BIOSINTESIS
BIOSYNTHESE
BIOSYNTHESIS
CARBON 14 COMPOUNDS
CARBOXYLIC ACIDS
CELL CONSTITUENTS
CENTRIFUGATION
CHEMICAL REACTIONS
CHLOROPLASTS
CHOLINE
CULTIVAR
CULTIVARES
CULTIVARS
DRUGS
Enzymes
FOOD
Fundamental and applied biological sciences. Psychology
HYDROXY COMPOUNDS
LABELLED COMPOUNDS
LEAVES
LIPOTROPIC FACTORS
Metabolism
ORGANIC ACIDS
ORGANIC COMPOUNDS
OXIDATION
Peas
PISUM SATIVUM
PLANT CELLS
Plant physiology and development
PLANTS
PLASTE
PLASTIDOS
PLASTIDS
Protoplasts
QUATERNARY COMPOUNDS
SEPARATION PROCESSES
SPINACH
SPINACIA OLERACEA
SYNTHESIS
VEGETABLES
title Betaine synthesis in chenopods: localization in chloroplasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Betaine%20synthesis%20in%20chenopods:%20localization%20in%20chloroplasts&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20U.S.A.;%20(United%20States)&rft.au=Hanson,%20A.D&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing&rft.date=1985-06-01&rft.volume=82&rft.issue=11&rft.spage=3678&rft.epage=3682&rft.pages=3678-3682&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.82.11.3678&rft_dat=%3Cjstor_pnas_%3E25732%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733505214&rft_id=info:pmid/16593569&rft_jstor_id=25732&rfr_iscdi=true