Betaine synthesis in chenopods: localization in chloroplasts
Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from l...
Gespeichert in:
Veröffentlicht in: | Proc. Natl. Acad. Sci. U.S.A.; (United States) 1985-06, Vol.82 (11), p.3678-3682 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3682 |
---|---|
container_issue | 11 |
container_start_page | 3678 |
container_title | Proc. Natl. Acad. Sci. U.S.A.; (United States) |
container_volume | 82 |
creator | Hanson, A.D May, A.M Grumet, R Bode, J Jamieson, G.C Rhodes, D |
description | Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals. |
doi_str_mv | 10.1073/pnas.82.11.3678 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_82_11_3678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25732</jstor_id><sourcerecordid>25732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS1ERUNgjcQCRQipq0n9GL8QLKCiBakSC-jacjyexpVjD74Oovx6Jpo0bTesvDjfPedeH4ReEbwkWLLTIVlYKrokZMmEVE_QjGBNGtFq_BTNMKayUS1tj9FzgBuMseYKP0PHRHDNuNAz9OGzrzYkv4DbVNceAixCWri1T3nIHbxfxOxsDH9tDTlNUswlD9FChRfoqLcR_Mv9O0dX519-nn1tLr9ffDv7dNk4zkRtuMC67zi1lDrpyUo5KaVYWU6YIq2mne005ZgxIlaUd5IKQTrCJZfK867zbI4-Tr7DdrXxnfOpFhvNUMLGlluTbTCPlRTW5jr_NkxLNRrP0dtpPkMNBlyo3q1dTsm7agRWfNxjhE72ISX_2nqoZhPA-Rht8nkLRjLGMaekHcnTiXQlAxTfHzYh2OxqMbtajKKGELOrZZx48_CAe37fwwi82wMWxv_ui00uwIHTlGrWigc-u4A79VHQyX8B029jrP5PHcnXE3kDNZcDSrlk9F7sbTb2uoyrXP1QgnKqW_YPljm-nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733505214</pqid></control><display><type>article</type><title>Betaine synthesis in chenopods: localization in chloroplasts</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D</creator><creatorcontrib>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D ; Michigan State Univ., East Lansing</creatorcontrib><description>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.82.11.3678</identifier><identifier>PMID: 16593569</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; 550301 - Cytology- Tracer Techniques ; ALCOHOLS ; AMINES ; AMINO ACIDS ; AMMONIUM COMPOUNDS ; BASIC BIOLOGICAL SCIENCES ; BETA VULGARIS ; BETAINE ; Betaines ; Biological and medical sciences ; BIOLOGICAL LOCALIZATION ; Biological Sciences: Botany ; BIOLOGICAL STRESS ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; CARBON 14 COMPOUNDS ; CARBOXYLIC ACIDS ; CELL CONSTITUENTS ; CENTRIFUGATION ; CHEMICAL REACTIONS ; CHLOROPLASTS ; CHOLINE ; CULTIVAR ; CULTIVARES ; CULTIVARS ; DRUGS ; Enzymes ; FOOD ; Fundamental and applied biological sciences. Psychology ; HYDROXY COMPOUNDS ; LABELLED COMPOUNDS ; LEAVES ; LIPOTROPIC FACTORS ; Metabolism ; ORGANIC ACIDS ; ORGANIC COMPOUNDS ; OXIDATION ; Peas ; PISUM SATIVUM ; PLANT CELLS ; Plant physiology and development ; PLANTS ; PLASTE ; PLASTIDOS ; PLASTIDS ; Protoplasts ; QUATERNARY COMPOUNDS ; SEPARATION PROCESSES ; SPINACH ; SPINACIA OLERACEA ; SYNTHESIS ; VEGETABLES</subject><ispartof>Proc. Natl. Acad. Sci. U.S.A.; (United States), 1985-06, Vol.82 (11), p.3678-3682</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/82/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25732$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25732$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9229346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16593569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6085381$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanson, A.D</creatorcontrib><creatorcontrib>May, A.M</creatorcontrib><creatorcontrib>Grumet, R</creatorcontrib><creatorcontrib>Bode, J</creatorcontrib><creatorcontrib>Jamieson, G.C</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing</creatorcontrib><title>Betaine synthesis in chenopods: localization in chloroplasts</title><title>Proc. Natl. Acad. Sci. U.S.A.; (United States)</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>550301 - Cytology- Tracer Techniques</subject><subject>ALCOHOLS</subject><subject>AMINES</subject><subject>AMINO ACIDS</subject><subject>AMMONIUM COMPOUNDS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BETA VULGARIS</subject><subject>BETAINE</subject><subject>Betaines</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL LOCALIZATION</subject><subject>Biological Sciences: Botany</subject><subject>BIOLOGICAL STRESS</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>CARBON 14 COMPOUNDS</subject><subject>CARBOXYLIC ACIDS</subject><subject>CELL CONSTITUENTS</subject><subject>CENTRIFUGATION</subject><subject>CHEMICAL REACTIONS</subject><subject>CHLOROPLASTS</subject><subject>CHOLINE</subject><subject>CULTIVAR</subject><subject>CULTIVARES</subject><subject>CULTIVARS</subject><subject>DRUGS</subject><subject>Enzymes</subject><subject>FOOD</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HYDROXY COMPOUNDS</subject><subject>LABELLED COMPOUNDS</subject><subject>LEAVES</subject><subject>LIPOTROPIC FACTORS</subject><subject>Metabolism</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXIDATION</subject><subject>Peas</subject><subject>PISUM SATIVUM</subject><subject>PLANT CELLS</subject><subject>Plant physiology and development</subject><subject>PLANTS</subject><subject>PLASTE</subject><subject>PLASTIDOS</subject><subject>PLASTIDS</subject><subject>Protoplasts</subject><subject>QUATERNARY COMPOUNDS</subject><subject>SEPARATION PROCESSES</subject><subject>SPINACH</subject><subject>SPINACIA OLERACEA</subject><subject>SYNTHESIS</subject><subject>VEGETABLES</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS1ERUNgjcQCRQipq0n9GL8QLKCiBakSC-jacjyexpVjD74Oovx6Jpo0bTesvDjfPedeH4ReEbwkWLLTIVlYKrokZMmEVE_QjGBNGtFq_BTNMKayUS1tj9FzgBuMseYKP0PHRHDNuNAz9OGzrzYkv4DbVNceAixCWri1T3nIHbxfxOxsDH9tDTlNUswlD9FChRfoqLcR_Mv9O0dX519-nn1tLr9ffDv7dNk4zkRtuMC67zi1lDrpyUo5KaVYWU6YIq2mne005ZgxIlaUd5IKQTrCJZfK867zbI4-Tr7DdrXxnfOpFhvNUMLGlluTbTCPlRTW5jr_NkxLNRrP0dtpPkMNBlyo3q1dTsm7agRWfNxjhE72ISX_2nqoZhPA-Rht8nkLRjLGMaekHcnTiXQlAxTfHzYh2OxqMbtajKKGELOrZZx48_CAe37fwwi82wMWxv_ui00uwIHTlGrWigc-u4A79VHQyX8B029jrP5PHcnXE3kDNZcDSrlk9F7sbTb2uoyrXP1QgnKqW_YPljm-nA</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Hanson, A.D</creator><creator>May, A.M</creator><creator>Grumet, R</creator><creator>Bode, J</creator><creator>Jamieson, G.C</creator><creator>Rhodes, D</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19850601</creationdate><title>Betaine synthesis in chenopods: localization in chloroplasts</title><author>Hanson, A.D ; May, A.M ; Grumet, R ; Bode, J ; Jamieson, G.C ; Rhodes, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-5609fd52a22c7e1b8c7776ba51381492dad92503316b25d72661d157578e5dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>550301 - Cytology- Tracer Techniques</topic><topic>ALCOHOLS</topic><topic>AMINES</topic><topic>AMINO ACIDS</topic><topic>AMMONIUM COMPOUNDS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BETA VULGARIS</topic><topic>BETAINE</topic><topic>Betaines</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL LOCALIZATION</topic><topic>Biological Sciences: Botany</topic><topic>BIOLOGICAL STRESS</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>CARBON 14 COMPOUNDS</topic><topic>CARBOXYLIC ACIDS</topic><topic>CELL CONSTITUENTS</topic><topic>CENTRIFUGATION</topic><topic>CHEMICAL REACTIONS</topic><topic>CHLOROPLASTS</topic><topic>CHOLINE</topic><topic>CULTIVAR</topic><topic>CULTIVARES</topic><topic>CULTIVARS</topic><topic>DRUGS</topic><topic>Enzymes</topic><topic>FOOD</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HYDROXY COMPOUNDS</topic><topic>LABELLED COMPOUNDS</topic><topic>LEAVES</topic><topic>LIPOTROPIC FACTORS</topic><topic>Metabolism</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXIDATION</topic><topic>Peas</topic><topic>PISUM SATIVUM</topic><topic>PLANT CELLS</topic><topic>Plant physiology and development</topic><topic>PLANTS</topic><topic>PLASTE</topic><topic>PLASTIDOS</topic><topic>PLASTIDS</topic><topic>Protoplasts</topic><topic>QUATERNARY COMPOUNDS</topic><topic>SEPARATION PROCESSES</topic><topic>SPINACH</topic><topic>SPINACIA OLERACEA</topic><topic>SYNTHESIS</topic><topic>VEGETABLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, A.D</creatorcontrib><creatorcontrib>May, A.M</creatorcontrib><creatorcontrib>Grumet, R</creatorcontrib><creatorcontrib>Bode, J</creatorcontrib><creatorcontrib>Jamieson, G.C</creatorcontrib><creatorcontrib>Rhodes, D</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, A.D</au><au>May, A.M</au><au>Grumet, R</au><au>Bode, J</au><au>Jamieson, G.C</au><au>Rhodes, D</au><aucorp>Michigan State Univ., East Lansing</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Betaine synthesis in chenopods: localization in chloroplasts</atitle><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1985-06-01</date><risdate>1985</risdate><volume>82</volume><issue>11</issue><spage>3678</spage><epage>3682</epage><pages>3678-3682</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline → betainal (betaine aldehyde) → betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized [14C]choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the [14C]choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong [14C]choline-oxidizing activity (1-3 nmol/mg of chlorophyll per hr), although the proportion of the intermediate, [14C]betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized [14C]betainal to betaine (20-100 nmol/mg of chlorophyll per hr). Light increased the oxidation of both [14C]choline and [14C]betainal by isolated chloroplasts ≈ 3-fold; this light-stimulation was abolished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16593569</pmid><doi>10.1073/pnas.82.11.3678</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proc. Natl. Acad. Sci. U.S.A.; (United States), 1985-06, Vol.82 (11), p.3678-3682 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_82_11_3678 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 550201 - Biochemistry- Tracer Techniques 550301 - Cytology- Tracer Techniques ALCOHOLS AMINES AMINO ACIDS AMMONIUM COMPOUNDS BASIC BIOLOGICAL SCIENCES BETA VULGARIS BETAINE Betaines Biological and medical sciences BIOLOGICAL LOCALIZATION Biological Sciences: Botany BIOLOGICAL STRESS BIOSINTESIS BIOSYNTHESE BIOSYNTHESIS CARBON 14 COMPOUNDS CARBOXYLIC ACIDS CELL CONSTITUENTS CENTRIFUGATION CHEMICAL REACTIONS CHLOROPLASTS CHOLINE CULTIVAR CULTIVARES CULTIVARS DRUGS Enzymes FOOD Fundamental and applied biological sciences. Psychology HYDROXY COMPOUNDS LABELLED COMPOUNDS LEAVES LIPOTROPIC FACTORS Metabolism ORGANIC ACIDS ORGANIC COMPOUNDS OXIDATION Peas PISUM SATIVUM PLANT CELLS Plant physiology and development PLANTS PLASTE PLASTIDOS PLASTIDS Protoplasts QUATERNARY COMPOUNDS SEPARATION PROCESSES SPINACH SPINACIA OLERACEA SYNTHESIS VEGETABLES |
title | Betaine synthesis in chenopods: localization in chloroplasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Betaine%20synthesis%20in%20chenopods:%20localization%20in%20chloroplasts&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20U.S.A.;%20(United%20States)&rft.au=Hanson,%20A.D&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing&rft.date=1985-06-01&rft.volume=82&rft.issue=11&rft.spage=3678&rft.epage=3682&rft.pages=3678-3682&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.82.11.3678&rft_dat=%3Cjstor_pnas_%3E25732%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733505214&rft_id=info:pmid/16593569&rft_jstor_id=25732&rfr_iscdi=true |