Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin
Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were s...
Gespeichert in:
Veröffentlicht in: | Proc. Natl. Acad. Sci. U.S.A.; (United States) 1984-04, Vol.81 (7), p.2055-2059 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2059 |
---|---|
container_issue | 7 |
container_start_page | 2055 |
container_title | Proc. Natl. Acad. Sci. U.S.A.; (United States) |
container_volume | 81 |
creator | Smith, Steven O. Myers, Anne B. Pardoen, Johannes A. Winkel, Chris Patrick P. J. Mulder Lugtenburg, Johan Mathies, Richard |
description | Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight ( |
doi_str_mv | 10.1073/pnas.81.7.2055 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_81_7_2055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23764</jstor_id><sourcerecordid>23764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</originalsourceid><addsrcrecordid>eNp9kc9vFCEcxYnR2HX16sFEM_FQTzN-GWBgDh7sqtWkiYk_zoRhoEszCyswpv73ss5a66Wnb-B93vtCHkJPMTQYOHm99yo1Aje8aYGxe2iFocd1R3u4j1YALa8FbekJepTSFQD0TMBDdII71hNK2QqdvzPZxJ3zKrvgq2CrLyaX01R91VtnbXWmkqk2wVt3OccFcr7c6mJzIW7DGPbJ-cfogVVTMk-Oc42-f3j_bfOxvvh8_mnz9qLWTLS5HlotgOsyyMh7ZjgfcWe73ghG244N46CgH4WytOspAdDcDFSMUGBFKBnIGr1ZcvfzsDOjNj5HNcl9dDsVf8mgnPxf8W4rL8NPSSijhBX_y8UfUnYyaZeN3urgvdFZdtD2mOICvTouieHHbFKWO5e0mSblTZiT5IQw-BO4Rqd3kpgI3gnGC9gsoI4hpWjszZMxyEOT8tCkFFhyeWiyGF7c_ug__FhdAZ4fgYPxr3w74PQuXdp5mrK5zgV8toBXKYd4Q7aEd5T8BnBVuwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13876857</pqid></control><display><type>article</type><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard</creator><creatorcontrib>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard ; Univ. of California, Berkeley</creatorcontrib><description>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (<5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.81.7.2055</identifier><identifier>PMID: 16593445</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-) ; 550201 - Biochemistry- Tracer Techniques ; bacteriorhodopsin ; Bacteriorhodopsins ; BASIC BIOLOGICAL SCIENCES ; BIOLOGICAL ADAPTATION ; Biological Sciences: Biophysics ; CARBON 13 ; CARBON ISOTOPES ; CELL CONSTITUENTS ; CELL MEMBRANES ; CHEMICAL REACTIONS ; CHEMICAL SHIFT ; Chromophores ; ELECTROMAGNETIC RADIATION ; EVEN-ODD NUCLEI ; Halobacterium halobium ; IMINES ; ISOMERIZATION ; ISOTOPE APPLICATIONS ; ISOTOPES ; LABELLED COMPOUNDS ; LIGHT NUCLEI ; Line spectra ; MEMBRANES ; MOLECULAR STRUCTURE ; Nitrogen ; NUCLEI ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; photocycles ; PIGMENTS ; PROTEINS ; Protons ; Purple membrane ; purple membranes ; RADIATIONS ; Raman scattering ; RAMAN SPECTRA ; Raman spectroscopy ; RHODOPSIN ; SCHIFF BASES ; SOLAR ENERGY ; SPECTRA ; STABLE ISOTOPES ; TRACER TECHNIQUES ; Vibration ; VISIBLE RADIATION</subject><ispartof>Proc. Natl. Acad. Sci. U.S.A.; (United States), 1984-04, Vol.81 (7), p.2055-2059</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/81/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23764$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23764$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16593445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6029141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Myers, Anne B.</creatorcontrib><creatorcontrib>Pardoen, Johannes A.</creatorcontrib><creatorcontrib>Winkel, Chris</creatorcontrib><creatorcontrib>Patrick P. J. Mulder</creatorcontrib><creatorcontrib>Lugtenburg, Johan</creatorcontrib><creatorcontrib>Mathies, Richard</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><title>Proc. Natl. Acad. Sci. U.S.A.; (United States)</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (<5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</description><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)</subject><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>bacteriorhodopsin</subject><subject>Bacteriorhodopsins</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOLOGICAL ADAPTATION</subject><subject>Biological Sciences: Biophysics</subject><subject>CARBON 13</subject><subject>CARBON ISOTOPES</subject><subject>CELL CONSTITUENTS</subject><subject>CELL MEMBRANES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMICAL SHIFT</subject><subject>Chromophores</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>EVEN-ODD NUCLEI</subject><subject>Halobacterium halobium</subject><subject>IMINES</subject><subject>ISOMERIZATION</subject><subject>ISOTOPE APPLICATIONS</subject><subject>ISOTOPES</subject><subject>LABELLED COMPOUNDS</subject><subject>LIGHT NUCLEI</subject><subject>Line spectra</subject><subject>MEMBRANES</subject><subject>MOLECULAR STRUCTURE</subject><subject>Nitrogen</subject><subject>NUCLEI</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>photocycles</subject><subject>PIGMENTS</subject><subject>PROTEINS</subject><subject>Protons</subject><subject>Purple membrane</subject><subject>purple membranes</subject><subject>RADIATIONS</subject><subject>Raman scattering</subject><subject>RAMAN SPECTRA</subject><subject>Raman spectroscopy</subject><subject>RHODOPSIN</subject><subject>SCHIFF BASES</subject><subject>SOLAR ENERGY</subject><subject>SPECTRA</subject><subject>STABLE ISOTOPES</subject><subject>TRACER TECHNIQUES</subject><subject>Vibration</subject><subject>VISIBLE RADIATION</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kc9vFCEcxYnR2HX16sFEM_FQTzN-GWBgDh7sqtWkiYk_zoRhoEszCyswpv73ss5a66Wnb-B93vtCHkJPMTQYOHm99yo1Aje8aYGxe2iFocd1R3u4j1YALa8FbekJepTSFQD0TMBDdII71hNK2QqdvzPZxJ3zKrvgq2CrLyaX01R91VtnbXWmkqk2wVt3OccFcr7c6mJzIW7DGPbJ-cfogVVTMk-Oc42-f3j_bfOxvvh8_mnz9qLWTLS5HlotgOsyyMh7ZjgfcWe73ghG244N46CgH4WytOspAdDcDFSMUGBFKBnIGr1ZcvfzsDOjNj5HNcl9dDsVf8mgnPxf8W4rL8NPSSijhBX_y8UfUnYyaZeN3urgvdFZdtD2mOICvTouieHHbFKWO5e0mSblTZiT5IQw-BO4Rqd3kpgI3gnGC9gsoI4hpWjszZMxyEOT8tCkFFhyeWiyGF7c_ug__FhdAZ4fgYPxr3w74PQuXdp5mrK5zgV8toBXKYd4Q7aEd5T8BnBVuwQ</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Smith, Steven O.</creator><creator>Myers, Anne B.</creator><creator>Pardoen, Johannes A.</creator><creator>Winkel, Chris</creator><creator>Patrick P. J. Mulder</creator><creator>Lugtenburg, Johan</creator><creator>Mathies, Richard</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19840401</creationdate><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><author>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)</topic><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>bacteriorhodopsin</topic><topic>Bacteriorhodopsins</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOLOGICAL ADAPTATION</topic><topic>Biological Sciences: Biophysics</topic><topic>CARBON 13</topic><topic>CARBON ISOTOPES</topic><topic>CELL CONSTITUENTS</topic><topic>CELL MEMBRANES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMICAL SHIFT</topic><topic>Chromophores</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>EVEN-ODD NUCLEI</topic><topic>Halobacterium halobium</topic><topic>IMINES</topic><topic>ISOMERIZATION</topic><topic>ISOTOPE APPLICATIONS</topic><topic>ISOTOPES</topic><topic>LABELLED COMPOUNDS</topic><topic>LIGHT NUCLEI</topic><topic>Line spectra</topic><topic>MEMBRANES</topic><topic>MOLECULAR STRUCTURE</topic><topic>Nitrogen</topic><topic>NUCLEI</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>photocycles</topic><topic>PIGMENTS</topic><topic>PROTEINS</topic><topic>Protons</topic><topic>Purple membrane</topic><topic>purple membranes</topic><topic>RADIATIONS</topic><topic>Raman scattering</topic><topic>RAMAN SPECTRA</topic><topic>Raman spectroscopy</topic><topic>RHODOPSIN</topic><topic>SCHIFF BASES</topic><topic>SOLAR ENERGY</topic><topic>SPECTRA</topic><topic>STABLE ISOTOPES</topic><topic>TRACER TECHNIQUES</topic><topic>Vibration</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Myers, Anne B.</creatorcontrib><creatorcontrib>Pardoen, Johannes A.</creatorcontrib><creatorcontrib>Winkel, Chris</creatorcontrib><creatorcontrib>Patrick P. J. Mulder</creatorcontrib><creatorcontrib>Lugtenburg, Johan</creatorcontrib><creatorcontrib>Mathies, Richard</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Steven O.</au><au>Myers, Anne B.</au><au>Pardoen, Johannes A.</au><au>Winkel, Chris</au><au>Patrick P. J. Mulder</au><au>Lugtenburg, Johan</au><au>Mathies, Richard</au><aucorp>Univ. of California, Berkeley</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</atitle><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1984-04-01</date><risdate>1984</risdate><volume>81</volume><issue>7</issue><spage>2055</spage><epage>2059</epage><pages>2055-2059</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (<5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16593445</pmid><doi>10.1073/pnas.81.7.2055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proc. Natl. Acad. Sci. U.S.A.; (United States), 1984-04, Vol.81 (7), p.2055-2059 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_81_7_2055 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-) 550201 - Biochemistry- Tracer Techniques bacteriorhodopsin Bacteriorhodopsins BASIC BIOLOGICAL SCIENCES BIOLOGICAL ADAPTATION Biological Sciences: Biophysics CARBON 13 CARBON ISOTOPES CELL CONSTITUENTS CELL MEMBRANES CHEMICAL REACTIONS CHEMICAL SHIFT Chromophores ELECTROMAGNETIC RADIATION EVEN-ODD NUCLEI Halobacterium halobium IMINES ISOMERIZATION ISOTOPE APPLICATIONS ISOTOPES LABELLED COMPOUNDS LIGHT NUCLEI Line spectra MEMBRANES MOLECULAR STRUCTURE Nitrogen NUCLEI ORGANIC COMPOUNDS ORGANIC NITROGEN COMPOUNDS photocycles PIGMENTS PROTEINS Protons Purple membrane purple membranes RADIATIONS Raman scattering RAMAN SPECTRA Raman spectroscopy RHODOPSIN SCHIFF BASES SOLAR ENERGY SPECTRA STABLE ISOTOPES TRACER TECHNIQUES Vibration VISIBLE RADIATION |
title | Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Retinal%20Schiff%20Base%20Configuration%20in%20Bacteriorhodopsin&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20U.S.A.;%20(United%20States)&rft.au=Smith,%20Steven%20O.&rft.aucorp=Univ.%20of%20California,%20Berkeley&rft.date=1984-04-01&rft.volume=81&rft.issue=7&rft.spage=2055&rft.epage=2059&rft.pages=2055-2059&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.81.7.2055&rft_dat=%3Cjstor_pnas_%3E23764%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13876857&rft_id=info:pmid/16593445&rft_jstor_id=23764&rfr_iscdi=true |