Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin

Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. Natl. Acad. Sci. U.S.A.; (United States) 1984-04, Vol.81 (7), p.2055-2059
Hauptverfasser: Smith, Steven O., Myers, Anne B., Pardoen, Johannes A., Winkel, Chris, Patrick P. J. Mulder, Lugtenburg, Johan, Mathies, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2059
container_issue 7
container_start_page 2055
container_title Proc. Natl. Acad. Sci. U.S.A.; (United States)
container_volume 81
creator Smith, Steven O.
Myers, Anne B.
Pardoen, Johannes A.
Winkel, Chris
Patrick P. J. Mulder
Lugtenburg, Johan
Mathies, Richard
description Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (
doi_str_mv 10.1073/pnas.81.7.2055
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_81_7_2055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23764</jstor_id><sourcerecordid>23764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</originalsourceid><addsrcrecordid>eNp9kc9vFCEcxYnR2HX16sFEM_FQTzN-GWBgDh7sqtWkiYk_zoRhoEszCyswpv73ss5a66Wnb-B93vtCHkJPMTQYOHm99yo1Aje8aYGxe2iFocd1R3u4j1YALa8FbekJepTSFQD0TMBDdII71hNK2QqdvzPZxJ3zKrvgq2CrLyaX01R91VtnbXWmkqk2wVt3OccFcr7c6mJzIW7DGPbJ-cfogVVTMk-Oc42-f3j_bfOxvvh8_mnz9qLWTLS5HlotgOsyyMh7ZjgfcWe73ghG244N46CgH4WytOspAdDcDFSMUGBFKBnIGr1ZcvfzsDOjNj5HNcl9dDsVf8mgnPxf8W4rL8NPSSijhBX_y8UfUnYyaZeN3urgvdFZdtD2mOICvTouieHHbFKWO5e0mSblTZiT5IQw-BO4Rqd3kpgI3gnGC9gsoI4hpWjszZMxyEOT8tCkFFhyeWiyGF7c_ug__FhdAZ4fgYPxr3w74PQuXdp5mrK5zgV8toBXKYd4Q7aEd5T8BnBVuwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13876857</pqid></control><display><type>article</type><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard</creator><creatorcontrib>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard ; Univ. of California, Berkeley</creatorcontrib><description>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (&lt;5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.81.7.2055</identifier><identifier>PMID: 16593445</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-) ; 550201 - Biochemistry- Tracer Techniques ; bacteriorhodopsin ; Bacteriorhodopsins ; BASIC BIOLOGICAL SCIENCES ; BIOLOGICAL ADAPTATION ; Biological Sciences: Biophysics ; CARBON 13 ; CARBON ISOTOPES ; CELL CONSTITUENTS ; CELL MEMBRANES ; CHEMICAL REACTIONS ; CHEMICAL SHIFT ; Chromophores ; ELECTROMAGNETIC RADIATION ; EVEN-ODD NUCLEI ; Halobacterium halobium ; IMINES ; ISOMERIZATION ; ISOTOPE APPLICATIONS ; ISOTOPES ; LABELLED COMPOUNDS ; LIGHT NUCLEI ; Line spectra ; MEMBRANES ; MOLECULAR STRUCTURE ; Nitrogen ; NUCLEI ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; photocycles ; PIGMENTS ; PROTEINS ; Protons ; Purple membrane ; purple membranes ; RADIATIONS ; Raman scattering ; RAMAN SPECTRA ; Raman spectroscopy ; RHODOPSIN ; SCHIFF BASES ; SOLAR ENERGY ; SPECTRA ; STABLE ISOTOPES ; TRACER TECHNIQUES ; Vibration ; VISIBLE RADIATION</subject><ispartof>Proc. Natl. Acad. Sci. U.S.A.; (United States), 1984-04, Vol.81 (7), p.2055-2059</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/81/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23764$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23764$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16593445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6029141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Myers, Anne B.</creatorcontrib><creatorcontrib>Pardoen, Johannes A.</creatorcontrib><creatorcontrib>Winkel, Chris</creatorcontrib><creatorcontrib>Patrick P. J. Mulder</creatorcontrib><creatorcontrib>Lugtenburg, Johan</creatorcontrib><creatorcontrib>Mathies, Richard</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><title>Proc. Natl. Acad. Sci. U.S.A.; (United States)</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (&lt;5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</description><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-)</subject><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>bacteriorhodopsin</subject><subject>Bacteriorhodopsins</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOLOGICAL ADAPTATION</subject><subject>Biological Sciences: Biophysics</subject><subject>CARBON 13</subject><subject>CARBON ISOTOPES</subject><subject>CELL CONSTITUENTS</subject><subject>CELL MEMBRANES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMICAL SHIFT</subject><subject>Chromophores</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>EVEN-ODD NUCLEI</subject><subject>Halobacterium halobium</subject><subject>IMINES</subject><subject>ISOMERIZATION</subject><subject>ISOTOPE APPLICATIONS</subject><subject>ISOTOPES</subject><subject>LABELLED COMPOUNDS</subject><subject>LIGHT NUCLEI</subject><subject>Line spectra</subject><subject>MEMBRANES</subject><subject>MOLECULAR STRUCTURE</subject><subject>Nitrogen</subject><subject>NUCLEI</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>photocycles</subject><subject>PIGMENTS</subject><subject>PROTEINS</subject><subject>Protons</subject><subject>Purple membrane</subject><subject>purple membranes</subject><subject>RADIATIONS</subject><subject>Raman scattering</subject><subject>RAMAN SPECTRA</subject><subject>Raman spectroscopy</subject><subject>RHODOPSIN</subject><subject>SCHIFF BASES</subject><subject>SOLAR ENERGY</subject><subject>SPECTRA</subject><subject>STABLE ISOTOPES</subject><subject>TRACER TECHNIQUES</subject><subject>Vibration</subject><subject>VISIBLE RADIATION</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kc9vFCEcxYnR2HX16sFEM_FQTzN-GWBgDh7sqtWkiYk_zoRhoEszCyswpv73ss5a66Wnb-B93vtCHkJPMTQYOHm99yo1Aje8aYGxe2iFocd1R3u4j1YALa8FbekJepTSFQD0TMBDdII71hNK2QqdvzPZxJ3zKrvgq2CrLyaX01R91VtnbXWmkqk2wVt3OccFcr7c6mJzIW7DGPbJ-cfogVVTMk-Oc42-f3j_bfOxvvh8_mnz9qLWTLS5HlotgOsyyMh7ZjgfcWe73ghG244N46CgH4WytOspAdDcDFSMUGBFKBnIGr1ZcvfzsDOjNj5HNcl9dDsVf8mgnPxf8W4rL8NPSSijhBX_y8UfUnYyaZeN3urgvdFZdtD2mOICvTouieHHbFKWO5e0mSblTZiT5IQw-BO4Rqd3kpgI3gnGC9gsoI4hpWjszZMxyEOT8tCkFFhyeWiyGF7c_ug__FhdAZ4fgYPxr3w74PQuXdp5mrK5zgV8toBXKYd4Q7aEd5T8BnBVuwQ</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Smith, Steven O.</creator><creator>Myers, Anne B.</creator><creator>Pardoen, Johannes A.</creator><creator>Winkel, Chris</creator><creator>Patrick P. J. Mulder</creator><creator>Lugtenburg, Johan</creator><creator>Mathies, Richard</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19840401</creationdate><title>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</title><author>Smith, Steven O. ; Myers, Anne B. ; Pardoen, Johannes A. ; Winkel, Chris ; Patrick P. J. Mulder ; Lugtenburg, Johan ; Mathies, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-b2c807cb2c3d795e77d16f69e854265bdba09d8af4694300c7eb48d0d79a343b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-)</topic><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>bacteriorhodopsin</topic><topic>Bacteriorhodopsins</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOLOGICAL ADAPTATION</topic><topic>Biological Sciences: Biophysics</topic><topic>CARBON 13</topic><topic>CARBON ISOTOPES</topic><topic>CELL CONSTITUENTS</topic><topic>CELL MEMBRANES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMICAL SHIFT</topic><topic>Chromophores</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>EVEN-ODD NUCLEI</topic><topic>Halobacterium halobium</topic><topic>IMINES</topic><topic>ISOMERIZATION</topic><topic>ISOTOPE APPLICATIONS</topic><topic>ISOTOPES</topic><topic>LABELLED COMPOUNDS</topic><topic>LIGHT NUCLEI</topic><topic>Line spectra</topic><topic>MEMBRANES</topic><topic>MOLECULAR STRUCTURE</topic><topic>Nitrogen</topic><topic>NUCLEI</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>photocycles</topic><topic>PIGMENTS</topic><topic>PROTEINS</topic><topic>Protons</topic><topic>Purple membrane</topic><topic>purple membranes</topic><topic>RADIATIONS</topic><topic>Raman scattering</topic><topic>RAMAN SPECTRA</topic><topic>Raman spectroscopy</topic><topic>RHODOPSIN</topic><topic>SCHIFF BASES</topic><topic>SOLAR ENERGY</topic><topic>SPECTRA</topic><topic>STABLE ISOTOPES</topic><topic>TRACER TECHNIQUES</topic><topic>Vibration</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Steven O.</creatorcontrib><creatorcontrib>Myers, Anne B.</creatorcontrib><creatorcontrib>Pardoen, Johannes A.</creatorcontrib><creatorcontrib>Winkel, Chris</creatorcontrib><creatorcontrib>Patrick P. J. Mulder</creatorcontrib><creatorcontrib>Lugtenburg, Johan</creatorcontrib><creatorcontrib>Mathies, Richard</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Steven O.</au><au>Myers, Anne B.</au><au>Pardoen, Johannes A.</au><au>Winkel, Chris</au><au>Patrick P. J. Mulder</au><au>Lugtenburg, Johan</au><au>Mathies, Richard</au><aucorp>Univ. of California, Berkeley</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin</atitle><jtitle>Proc. Natl. Acad. Sci. U.S.A.; (United States)</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1984-04-01</date><risdate>1984</risdate><volume>81</volume><issue>7</issue><spage>2055</spage><epage>2059</epage><pages>2055-2059</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Resonance Raman spectra of the BR568, BR548, K625, and L550intermediates of the bacteriorhodopsin photocycle have been obtained in1H2O and2H2O by using native purple membrane as well as purple membrane regenerated with 14, 15-13C2and 12,14-2H2isotopic derivatives of retinal. These derivatives were selected to determine the contribution of the C14--C15stretch to the normal modes in the 1100-to C14--C15fingerprint region and to characterize the coupling of the C14--C15stretch with the NH rock. Normal mode calculations demonstrate that when the retinal Schiff base is in the C==N cis configuration the C14--C15stretch and the NH rock are strongly coupled, resulting in a large (≈ 50-cm-1) upshift of the C14--C15stretch upon deuteration of the Schiff base nitrogen. In the C==N trans geometry these vibrations are weakly coupled and only a slight (&lt;5-cm-1) upshift of the C14--C15stretch is predicted upon N-deuteration. In BR568, the insensitivity of the 1201-cm-1C14--C15stretch to N-deuteration demonstrates that its retinal C==N configuration is trans. The C14--C15stretch in BR548, however, shifts up from 1167 cm-1in1H2O to 1208 cm-1in2H2O, indicating that BR548contains a C==N cis chromophore. Thus, the conversion of BR568to BR548(dark adaptation) involves isomerization about the C==N bond in addition to isomerization about the C==N bond. The insensitivity of the native, [14,15-13C2]- and [12,14-2H2]K625and L550spectra to N-deuteration argues that these intermediates have a C==N trans configuration. Thus, the primary photochemical step in bacteriorhodopsin (BR568→ K625) involves isomerization about the C13==C14bond alone. The significance of these results for the mechanism of proton-pumping by bacteriorhodopsin is discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16593445</pmid><doi>10.1073/pnas.81.7.2055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proc. Natl. Acad. Sci. U.S.A.; (United States), 1984-04, Vol.81 (7), p.2055-2059
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_81_7_2055
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)
550201 - Biochemistry- Tracer Techniques
bacteriorhodopsin
Bacteriorhodopsins
BASIC BIOLOGICAL SCIENCES
BIOLOGICAL ADAPTATION
Biological Sciences: Biophysics
CARBON 13
CARBON ISOTOPES
CELL CONSTITUENTS
CELL MEMBRANES
CHEMICAL REACTIONS
CHEMICAL SHIFT
Chromophores
ELECTROMAGNETIC RADIATION
EVEN-ODD NUCLEI
Halobacterium halobium
IMINES
ISOMERIZATION
ISOTOPE APPLICATIONS
ISOTOPES
LABELLED COMPOUNDS
LIGHT NUCLEI
Line spectra
MEMBRANES
MOLECULAR STRUCTURE
Nitrogen
NUCLEI
ORGANIC COMPOUNDS
ORGANIC NITROGEN COMPOUNDS
photocycles
PIGMENTS
PROTEINS
Protons
Purple membrane
purple membranes
RADIATIONS
Raman scattering
RAMAN SPECTRA
Raman spectroscopy
RHODOPSIN
SCHIFF BASES
SOLAR ENERGY
SPECTRA
STABLE ISOTOPES
TRACER TECHNIQUES
Vibration
VISIBLE RADIATION
title Determination of Retinal Schiff Base Configuration in Bacteriorhodopsin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Retinal%20Schiff%20Base%20Configuration%20in%20Bacteriorhodopsin&rft.jtitle=Proc.%20Natl.%20Acad.%20Sci.%20U.S.A.;%20(United%20States)&rft.au=Smith,%20Steven%20O.&rft.aucorp=Univ.%20of%20California,%20Berkeley&rft.date=1984-04-01&rft.volume=81&rft.issue=7&rft.spage=2055&rft.epage=2059&rft.pages=2055-2059&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.81.7.2055&rft_dat=%3Cjstor_pnas_%3E23764%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13876857&rft_id=info:pmid/16593445&rft_jstor_id=23764&rfr_iscdi=true