Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts

Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1982-08, Vol.79 (16), p.4972-4976
Hauptverfasser: Bagley, K., Dollinger, G., Eisenstein, L., Singh, A. K., Zimanyi, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4976
container_issue 16
container_start_page 4972
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 79
creator Bagley, K.
Dollinger, G.
Eisenstein, L.
Singh, A. K.
Zimanyi, L.
description Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.
doi_str_mv 10.1073/pnas.79.16.4972
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_79_16_4972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>12648</jstor_id><sourcerecordid>12648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS1EFJaFGgkJ5Aqq2djjd0EBgSQrRQKJUCLL4wc70aw9sT2I_HtmtUsgTahucb5zde85ALzAaIWRICdjNGUl1ArzFVWifQQWGCnccKrQY7BAqBWNpC19Ap6Wco0QUkyiY3DMFeMK8QX4fpam3PsMr7KJJaS8hesYssnewY99CD77aD38Onpbcyo2jbcwBfjB2Opzn_ImuTSWPkITHVzXAr9sUk1jTm6ytTwDR8EMxT8_zCX4dvbp6vSiufx8vj59f9lYxmRtrKdCWty6TrRc8g4ZZtpOOB84DUwoypwyXAjjDUeBYysNQR1xhAnpGCdkCd7t945Tt_XO-lizGfSY-63JtzqZXt9XYr_RP9JPTSiXc4xL8Obgz-lm8qXqbV-sHwYTfZqKFpRgRhn-L4gZw1IyOYMne9DOqZXsw90xGOldc3rXnBZKY653zc2OV__-cMcfqpr11wd9Z_yj3lvw9kFAh2kYqv9VZ_LlnrwuNeW_l7WcSvIbPNi4qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15518858</pqid></control><display><type>article</type><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</creator><creatorcontrib>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</creatorcontrib><description>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.79.16.4972</identifier><identifier>PMID: 6956906</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amides ; bacteriorhodopsin ; Bacteriorhodopsins ; Bacteriorhodopsins - radiation effects ; Biochemistry ; Carotenoids - radiation effects ; Chromophores ; Fourier Analysis ; Halobacterium halobium ; Hydrogen ; I.R. spectroscopy ; Infrared radiation ; Motion ; Photochemistry ; Protein Conformation ; Protons ; purple membranes ; Schiff bases ; Spectrophotometry, Infrared ; Vibration ; Vibration mode</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1982-08, Vol.79 (16), p.4972-4976</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/79/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/12648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/12648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6956906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagley, K.</creatorcontrib><creatorcontrib>Dollinger, G.</creatorcontrib><creatorcontrib>Eisenstein, L.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><creatorcontrib>Zimanyi, L.</creatorcontrib><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</description><subject>Amides</subject><subject>bacteriorhodopsin</subject><subject>Bacteriorhodopsins</subject><subject>Bacteriorhodopsins - radiation effects</subject><subject>Biochemistry</subject><subject>Carotenoids - radiation effects</subject><subject>Chromophores</subject><subject>Fourier Analysis</subject><subject>Halobacterium halobium</subject><subject>Hydrogen</subject><subject>I.R. spectroscopy</subject><subject>Infrared radiation</subject><subject>Motion</subject><subject>Photochemistry</subject><subject>Protein Conformation</subject><subject>Protons</subject><subject>purple membranes</subject><subject>Schiff bases</subject><subject>Spectrophotometry, Infrared</subject><subject>Vibration</subject><subject>Vibration mode</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUhS1EFJaFGgkJ5Aqq2djjd0EBgSQrRQKJUCLL4wc70aw9sT2I_HtmtUsgTahucb5zde85ALzAaIWRICdjNGUl1ArzFVWifQQWGCnccKrQY7BAqBWNpC19Ap6Wco0QUkyiY3DMFeMK8QX4fpam3PsMr7KJJaS8hesYssnewY99CD77aD38Onpbcyo2jbcwBfjB2Opzn_ImuTSWPkITHVzXAr9sUk1jTm6ytTwDR8EMxT8_zCX4dvbp6vSiufx8vj59f9lYxmRtrKdCWty6TrRc8g4ZZtpOOB84DUwoypwyXAjjDUeBYysNQR1xhAnpGCdkCd7t945Tt_XO-lizGfSY-63JtzqZXt9XYr_RP9JPTSiXc4xL8Obgz-lm8qXqbV-sHwYTfZqKFpRgRhn-L4gZw1IyOYMne9DOqZXsw90xGOldc3rXnBZKY653zc2OV__-cMcfqpr11wd9Z_yj3lvw9kFAh2kYqv9VZ_LlnrwuNeW_l7WcSvIbPNi4qg</recordid><startdate>19820801</startdate><enddate>19820801</enddate><creator>Bagley, K.</creator><creator>Dollinger, G.</creator><creator>Eisenstein, L.</creator><creator>Singh, A. K.</creator><creator>Zimanyi, L.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19820801</creationdate><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><author>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Amides</topic><topic>bacteriorhodopsin</topic><topic>Bacteriorhodopsins</topic><topic>Bacteriorhodopsins - radiation effects</topic><topic>Biochemistry</topic><topic>Carotenoids - radiation effects</topic><topic>Chromophores</topic><topic>Fourier Analysis</topic><topic>Halobacterium halobium</topic><topic>Hydrogen</topic><topic>I.R. spectroscopy</topic><topic>Infrared radiation</topic><topic>Motion</topic><topic>Photochemistry</topic><topic>Protein Conformation</topic><topic>Protons</topic><topic>purple membranes</topic><topic>Schiff bases</topic><topic>Spectrophotometry, Infrared</topic><topic>Vibration</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagley, K.</creatorcontrib><creatorcontrib>Dollinger, G.</creatorcontrib><creatorcontrib>Eisenstein, L.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><creatorcontrib>Zimanyi, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagley, K.</au><au>Dollinger, G.</au><au>Eisenstein, L.</au><au>Singh, A. K.</au><au>Zimanyi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1982-08-01</date><risdate>1982</risdate><volume>79</volume><issue>16</issue><spage>4972</spage><epage>4976</epage><pages>4972-4976</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>6956906</pmid><doi>10.1073/pnas.79.16.4972</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1982-08, Vol.79 (16), p.4972-4976
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_79_16_4972
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amides
bacteriorhodopsin
Bacteriorhodopsins
Bacteriorhodopsins - radiation effects
Biochemistry
Carotenoids - radiation effects
Chromophores
Fourier Analysis
Halobacterium halobium
Hydrogen
I.R. spectroscopy
Infrared radiation
Motion
Photochemistry
Protein Conformation
Protons
purple membranes
Schiff bases
Spectrophotometry, Infrared
Vibration
Vibration mode
title Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Transform%20Infrared%20Difference%20Spectroscopy%20of%20Bacteriorhodopsin%20and%20Its%20Photoproducts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bagley,%20K.&rft.date=1982-08-01&rft.volume=79&rft.issue=16&rft.spage=4972&rft.epage=4976&rft.pages=4972-4976&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.79.16.4972&rft_dat=%3Cjstor_pnas_%3E12648%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15518858&rft_id=info:pmid/6956906&rft_jstor_id=12648&rfr_iscdi=true