Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts
Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted b...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1982-08, Vol.79 (16), p.4972-4976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4976 |
---|---|
container_issue | 16 |
container_start_page | 4972 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 79 |
creator | Bagley, K. Dollinger, G. Eisenstein, L. Singh, A. K. Zimanyi, L. |
description | Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle. |
doi_str_mv | 10.1073/pnas.79.16.4972 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_79_16_4972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>12648</jstor_id><sourcerecordid>12648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS1EFJaFGgkJ5Aqq2djjd0EBgSQrRQKJUCLL4wc70aw9sT2I_HtmtUsgTahucb5zde85ALzAaIWRICdjNGUl1ArzFVWifQQWGCnccKrQY7BAqBWNpC19Ap6Wco0QUkyiY3DMFeMK8QX4fpam3PsMr7KJJaS8hesYssnewY99CD77aD38Onpbcyo2jbcwBfjB2Opzn_ImuTSWPkITHVzXAr9sUk1jTm6ytTwDR8EMxT8_zCX4dvbp6vSiufx8vj59f9lYxmRtrKdCWty6TrRc8g4ZZtpOOB84DUwoypwyXAjjDUeBYysNQR1xhAnpGCdkCd7t945Tt_XO-lizGfSY-63JtzqZXt9XYr_RP9JPTSiXc4xL8Obgz-lm8qXqbV-sHwYTfZqKFpRgRhn-L4gZw1IyOYMne9DOqZXsw90xGOldc3rXnBZKY653zc2OV__-cMcfqpr11wd9Z_yj3lvw9kFAh2kYqv9VZ_LlnrwuNeW_l7WcSvIbPNi4qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15518858</pqid></control><display><type>article</type><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</creator><creatorcontrib>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</creatorcontrib><description>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.79.16.4972</identifier><identifier>PMID: 6956906</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amides ; bacteriorhodopsin ; Bacteriorhodopsins ; Bacteriorhodopsins - radiation effects ; Biochemistry ; Carotenoids - radiation effects ; Chromophores ; Fourier Analysis ; Halobacterium halobium ; Hydrogen ; I.R. spectroscopy ; Infrared radiation ; Motion ; Photochemistry ; Protein Conformation ; Protons ; purple membranes ; Schiff bases ; Spectrophotometry, Infrared ; Vibration ; Vibration mode</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1982-08, Vol.79 (16), p.4972-4976</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/79/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/12648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/12648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6956906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagley, K.</creatorcontrib><creatorcontrib>Dollinger, G.</creatorcontrib><creatorcontrib>Eisenstein, L.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><creatorcontrib>Zimanyi, L.</creatorcontrib><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</description><subject>Amides</subject><subject>bacteriorhodopsin</subject><subject>Bacteriorhodopsins</subject><subject>Bacteriorhodopsins - radiation effects</subject><subject>Biochemistry</subject><subject>Carotenoids - radiation effects</subject><subject>Chromophores</subject><subject>Fourier Analysis</subject><subject>Halobacterium halobium</subject><subject>Hydrogen</subject><subject>I.R. spectroscopy</subject><subject>Infrared radiation</subject><subject>Motion</subject><subject>Photochemistry</subject><subject>Protein Conformation</subject><subject>Protons</subject><subject>purple membranes</subject><subject>Schiff bases</subject><subject>Spectrophotometry, Infrared</subject><subject>Vibration</subject><subject>Vibration mode</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUhS1EFJaFGgkJ5Aqq2djjd0EBgSQrRQKJUCLL4wc70aw9sT2I_HtmtUsgTahucb5zde85ALzAaIWRICdjNGUl1ArzFVWifQQWGCnccKrQY7BAqBWNpC19Ap6Wco0QUkyiY3DMFeMK8QX4fpam3PsMr7KJJaS8hesYssnewY99CD77aD38Onpbcyo2jbcwBfjB2Opzn_ImuTSWPkITHVzXAr9sUk1jTm6ytTwDR8EMxT8_zCX4dvbp6vSiufx8vj59f9lYxmRtrKdCWty6TrRc8g4ZZtpOOB84DUwoypwyXAjjDUeBYysNQR1xhAnpGCdkCd7t945Tt_XO-lizGfSY-63JtzqZXt9XYr_RP9JPTSiXc4xL8Obgz-lm8qXqbV-sHwYTfZqKFpRgRhn-L4gZw1IyOYMne9DOqZXsw90xGOldc3rXnBZKY653zc2OV__-cMcfqpr11wd9Z_yj3lvw9kFAh2kYqv9VZ_LlnrwuNeW_l7WcSvIbPNi4qg</recordid><startdate>19820801</startdate><enddate>19820801</enddate><creator>Bagley, K.</creator><creator>Dollinger, G.</creator><creator>Eisenstein, L.</creator><creator>Singh, A. K.</creator><creator>Zimanyi, L.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19820801</creationdate><title>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</title><author>Bagley, K. ; Dollinger, G. ; Eisenstein, L. ; Singh, A. K. ; Zimanyi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-ce478c12db72686b0a5a2b7def64f57945d9a677aea60f61c8a30b3d3578d5633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Amides</topic><topic>bacteriorhodopsin</topic><topic>Bacteriorhodopsins</topic><topic>Bacteriorhodopsins - radiation effects</topic><topic>Biochemistry</topic><topic>Carotenoids - radiation effects</topic><topic>Chromophores</topic><topic>Fourier Analysis</topic><topic>Halobacterium halobium</topic><topic>Hydrogen</topic><topic>I.R. spectroscopy</topic><topic>Infrared radiation</topic><topic>Motion</topic><topic>Photochemistry</topic><topic>Protein Conformation</topic><topic>Protons</topic><topic>purple membranes</topic><topic>Schiff bases</topic><topic>Spectrophotometry, Infrared</topic><topic>Vibration</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagley, K.</creatorcontrib><creatorcontrib>Dollinger, G.</creatorcontrib><creatorcontrib>Eisenstein, L.</creatorcontrib><creatorcontrib>Singh, A. K.</creatorcontrib><creatorcontrib>Zimanyi, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagley, K.</au><au>Dollinger, G.</au><au>Eisenstein, L.</au><au>Singh, A. K.</au><au>Zimanyi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1982-08-01</date><risdate>1982</risdate><volume>79</volume><issue>16</issue><spage>4972</spage><epage>4976</epage><pages>4972-4976</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>6956906</pmid><doi>10.1073/pnas.79.16.4972</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1982-08, Vol.79 (16), p.4972-4976 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_79_16_4972 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amides bacteriorhodopsin Bacteriorhodopsins Bacteriorhodopsins - radiation effects Biochemistry Carotenoids - radiation effects Chromophores Fourier Analysis Halobacterium halobium Hydrogen I.R. spectroscopy Infrared radiation Motion Photochemistry Protein Conformation Protons purple membranes Schiff bases Spectrophotometry, Infrared Vibration Vibration mode |
title | Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and Its Photoproducts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Transform%20Infrared%20Difference%20Spectroscopy%20of%20Bacteriorhodopsin%20and%20Its%20Photoproducts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bagley,%20K.&rft.date=1982-08-01&rft.volume=79&rft.issue=16&rft.spage=4972&rft.epage=4976&rft.pages=4972-4976&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.79.16.4972&rft_dat=%3Cjstor_pnas_%3E12648%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15518858&rft_id=info:pmid/6956906&rft_jstor_id=12648&rfr_iscdi=true |