Three-dimensional bioprinting of thick vascularized tissues
The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tiss...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (12), p.3179-3184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3184 |
---|---|
container_issue | 12 |
container_start_page | 3179 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Kolesky, David B. Homan, Kimberly A. Skylar-Scott, Mark A. Lewis, Jennifer A. |
description | The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation. |
doi_str_mv | 10.1073/pnas.1521342113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_113_12_3179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468745</jstor_id><sourcerecordid>26468745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-e5ee6903148acb74b8f40dd96e8885f257fe924a0ba7ae3308f5feb613da85803</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMQqRcuaT3-tpCQUMWXVIlLOVtOMul6ycaLnVSCv76OdlkKpznMb968mUfIS6AXQDW_3I8-X4BkwAUD4I_ICqiFWglLH5MVpUzXRjBxRp7lvKWUWmnoU3LGlJWghFqRdzebhFh3YYdjDnH0Q9WEuE9hnMJ4W8W-mjah_VHd-dzOg0_hN3bVFHKeMT8nT3o_ZHxxrGvy_dPHm6sv9fW3z1-vPlzXreR8qlEiKks5COPbRovG9IJ2nVVojJE9k7pHy4SnjdceOaemlz02CnjnTfHL1-T9QXc_NzvsWhyn5AdXTO58-uWiD-7fzhg27jbeOWGA6fKmNXl7FEjxZzE-uV3ILQ6DHzHO2YHW2hppGSvo-X_oNs6pvGWhDJVCK2YLdXmg2hRzTtifzAB1SzBuCcb9DaZMvH54w4n_k0QB3hyBZfIkB9wBcxz0svTVgdjmKaYHCkIZLSS_B3cmniY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780547629</pqid></control><display><type>article</type><title>Three-dimensional bioprinting of thick vascularized tissues</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kolesky, David B. ; Homan, Kimberly A. ; Skylar-Scott, Mark A. ; Lewis, Jennifer A.</creator><creatorcontrib>Kolesky, David B. ; Homan, Kimberly A. ; Skylar-Scott, Mark A. ; Lewis, Jennifer A.</creatorcontrib><description>The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1521342113</identifier><identifier>PMID: 26951646</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Blood Vessels ; Human Umbilical Vein Endothelial Cells ; Humans ; Physical Sciences ; Printing, Three-Dimensional ; Stem cells ; Tissues ; Veins & arteries</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (12), p.3179-3184</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 22, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-e5ee6903148acb74b8f40dd96e8885f257fe924a0ba7ae3308f5feb613da85803</citedby><cites>FETCH-LOGICAL-c533t-e5ee6903148acb74b8f40dd96e8885f257fe924a0ba7ae3308f5feb613da85803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468745$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468745$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26951646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolesky, David B.</creatorcontrib><creatorcontrib>Homan, Kimberly A.</creatorcontrib><creatorcontrib>Skylar-Scott, Mark A.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><title>Three-dimensional bioprinting of thick vascularized tissues</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.</description><subject>Blood Vessels</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Physical Sciences</subject><subject>Printing, Three-Dimensional</subject><subject>Stem cells</subject><subject>Tissues</subject><subject>Veins & arteries</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRMQqRcuaT3-tpCQUMWXVIlLOVtOMul6ycaLnVSCv76OdlkKpznMb968mUfIS6AXQDW_3I8-X4BkwAUD4I_ICqiFWglLH5MVpUzXRjBxRp7lvKWUWmnoU3LGlJWghFqRdzebhFh3YYdjDnH0Q9WEuE9hnMJ4W8W-mjah_VHd-dzOg0_hN3bVFHKeMT8nT3o_ZHxxrGvy_dPHm6sv9fW3z1-vPlzXreR8qlEiKks5COPbRovG9IJ2nVVojJE9k7pHy4SnjdceOaemlz02CnjnTfHL1-T9QXc_NzvsWhyn5AdXTO58-uWiD-7fzhg27jbeOWGA6fKmNXl7FEjxZzE-uV3ILQ6DHzHO2YHW2hppGSvo-X_oNs6pvGWhDJVCK2YLdXmg2hRzTtifzAB1SzBuCcb9DaZMvH54w4n_k0QB3hyBZfIkB9wBcxz0svTVgdjmKaYHCkIZLSS_B3cmniY</recordid><startdate>20160322</startdate><enddate>20160322</enddate><creator>Kolesky, David B.</creator><creator>Homan, Kimberly A.</creator><creator>Skylar-Scott, Mark A.</creator><creator>Lewis, Jennifer A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160322</creationdate><title>Three-dimensional bioprinting of thick vascularized tissues</title><author>Kolesky, David B. ; Homan, Kimberly A. ; Skylar-Scott, Mark A. ; Lewis, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-e5ee6903148acb74b8f40dd96e8885f257fe924a0ba7ae3308f5feb613da85803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Blood Vessels</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Physical Sciences</topic><topic>Printing, Three-Dimensional</topic><topic>Stem cells</topic><topic>Tissues</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolesky, David B.</creatorcontrib><creatorcontrib>Homan, Kimberly A.</creatorcontrib><creatorcontrib>Skylar-Scott, Mark A.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolesky, David B.</au><au>Homan, Kimberly A.</au><au>Skylar-Scott, Mark A.</au><au>Lewis, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional bioprinting of thick vascularized tissues</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-22</date><risdate>2016</risdate><volume>113</volume><issue>12</issue><spage>3179</spage><epage>3184</epage><pages>3179-3184</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26951646</pmid><doi>10.1073/pnas.1521342113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (12), p.3179-3184 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_113_12_3179 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Blood Vessels Human Umbilical Vein Endothelial Cells Humans Physical Sciences Printing, Three-Dimensional Stem cells Tissues Veins & arteries |
title | Three-dimensional bioprinting of thick vascularized tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20bioprinting%20of%20thick%20vascularized%20tissues&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kolesky,%20David%20B.&rft.date=2016-03-22&rft.volume=113&rft.issue=12&rft.spage=3179&rft.epage=3184&rft.pages=3179-3184&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1521342113&rft_dat=%3Cjstor_pnas_%3E26468745%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780547629&rft_id=info:pmid/26951646&rft_jstor_id=26468745&rfr_iscdi=true |