Mechanisms of backtrack recovery by RNA polymerases I and II
During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to sh...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (11), p.2946-2951 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2951 |
---|---|
container_issue | 11 |
container_start_page | 2946 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Lisica, Ana Engel, Christoph Jahnel, Marcus Roldán, Édgar Galburt, Eric A. Cramer, Patrick Grill, Stephan W. |
description | During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes. |
doi_str_mv | 10.1073/pnas.1517011113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_113_11_2946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468674</jstor_id><sourcerecordid>26468674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-2977e8198c67b52cafd51e02fc58a51549530274a3584354efca9e508e7148493</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpSZw0557aCnLJZZPR10qCEAghSQ1pC6U9C1mebdbdXTmSHfB_Xy123bQDmjnoN483PELeMThnoMXFcvD5nCmmgZUSr8iEgWVVLS28JhMArisjuTwkRzkvAMAqAwfkkNeWWyH0hFx-xvDohzb3mcaGznz4tUql0YQhPmPa0NmGfvtyTZex2_SYfMZMp9QPczqdviVvGt9lPNnNY_Lj7vb7zafq4ev99Ob6oQoKYFVxqzUaZk2o9Uzx4Ju5Ygi8Ccp4xZS0ShSn0gtlpFASm-AtKjComTTSimNytdVdrmc9zgMOxWPnlqntfdq46Fv378_QPrqf8dlJA4zrUeBsJ5Di0xrzyvVtDth1fsC4zo5po7hQSozo6X_oIq7TUM4rlLbMSjBQqIstFVLMOWGzN8PAjcm4MRn3N5my8eHlDXv-TxQF-LgDxs29HBPlOW5lXYj3W2KRVzG9UJC1qbUUvwGOM5td</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779194080</pqid></control><display><type>article</type><title>Mechanisms of backtrack recovery by RNA polymerases I and II</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lisica, Ana ; Engel, Christoph ; Jahnel, Marcus ; Roldán, Édgar ; Galburt, Eric A. ; Cramer, Patrick ; Grill, Stephan W.</creator><creatorcontrib>Lisica, Ana ; Engel, Christoph ; Jahnel, Marcus ; Roldán, Édgar ; Galburt, Eric A. ; Cramer, Patrick ; Grill, Stephan W.</creatorcontrib><description>During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1517011113</identifier><identifier>PMID: 26929337</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Diffusion ; Enzymes ; Experiments ; Models, Chemical ; Motion ; Optical Tweezers ; Protein Binding ; Protein Subunits ; RNA polymerase ; RNA Polymerase I - chemistry ; RNA Polymerase I - metabolism ; RNA Polymerase II - chemistry ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA, Fungal - biosynthesis ; RNA, Messenger - biosynthesis ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Deletion ; Stochastic models ; Stochastic Processes ; Time ; Transcription Elongation, Genetic - physiology ; Transcription factors ; Transcriptional Elongation Factors - chemistry ; Transcriptional Elongation Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (11), p.2946-2951</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-2977e8198c67b52cafd51e02fc58a51549530274a3584354efca9e508e7148493</citedby><cites>FETCH-LOGICAL-c500t-2977e8198c67b52cafd51e02fc58a51549530274a3584354efca9e508e7148493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468674$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468674$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26929337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisica, Ana</creatorcontrib><creatorcontrib>Engel, Christoph</creatorcontrib><creatorcontrib>Jahnel, Marcus</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Galburt, Eric A.</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><creatorcontrib>Grill, Stephan W.</creatorcontrib><title>Mechanisms of backtrack recovery by RNA polymerases I and II</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.</description><subject>Biological Sciences</subject><subject>Diffusion</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Models, Chemical</subject><subject>Motion</subject><subject>Optical Tweezers</subject><subject>Protein Binding</subject><subject>Protein Subunits</subject><subject>RNA polymerase</subject><subject>RNA Polymerase I - chemistry</subject><subject>RNA Polymerase I - metabolism</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA, Fungal - biosynthesis</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Deletion</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Time</subject><subject>Transcription Elongation, Genetic - physiology</subject><subject>Transcription factors</subject><subject>Transcriptional Elongation Factors - chemistry</subject><subject>Transcriptional Elongation Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rGzEQxUVpSZw0557aCnLJZZPR10qCEAghSQ1pC6U9C1mebdbdXTmSHfB_Xy123bQDmjnoN483PELeMThnoMXFcvD5nCmmgZUSr8iEgWVVLS28JhMArisjuTwkRzkvAMAqAwfkkNeWWyH0hFx-xvDohzb3mcaGznz4tUql0YQhPmPa0NmGfvtyTZex2_SYfMZMp9QPczqdviVvGt9lPNnNY_Lj7vb7zafq4ev99Ob6oQoKYFVxqzUaZk2o9Uzx4Ju5Ygi8Ccp4xZS0ShSn0gtlpFASm-AtKjComTTSimNytdVdrmc9zgMOxWPnlqntfdq46Fv378_QPrqf8dlJA4zrUeBsJ5Di0xrzyvVtDth1fsC4zo5po7hQSozo6X_oIq7TUM4rlLbMSjBQqIstFVLMOWGzN8PAjcm4MRn3N5my8eHlDXv-TxQF-LgDxs29HBPlOW5lXYj3W2KRVzG9UJC1qbUUvwGOM5td</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Lisica, Ana</creator><creator>Engel, Christoph</creator><creator>Jahnel, Marcus</creator><creator>Roldán, Édgar</creator><creator>Galburt, Eric A.</creator><creator>Cramer, Patrick</creator><creator>Grill, Stephan W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160315</creationdate><title>Mechanisms of backtrack recovery by RNA polymerases I and II</title><author>Lisica, Ana ; Engel, Christoph ; Jahnel, Marcus ; Roldán, Édgar ; Galburt, Eric A. ; Cramer, Patrick ; Grill, Stephan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-2977e8198c67b52cafd51e02fc58a51549530274a3584354efca9e508e7148493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological Sciences</topic><topic>Diffusion</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Models, Chemical</topic><topic>Motion</topic><topic>Optical Tweezers</topic><topic>Protein Binding</topic><topic>Protein Subunits</topic><topic>RNA polymerase</topic><topic>RNA Polymerase I - chemistry</topic><topic>RNA Polymerase I - metabolism</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA, Fungal - biosynthesis</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Deletion</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Time</topic><topic>Transcription Elongation, Genetic - physiology</topic><topic>Transcription factors</topic><topic>Transcriptional Elongation Factors - chemistry</topic><topic>Transcriptional Elongation Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisica, Ana</creatorcontrib><creatorcontrib>Engel, Christoph</creatorcontrib><creatorcontrib>Jahnel, Marcus</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Galburt, Eric A.</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><creatorcontrib>Grill, Stephan W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisica, Ana</au><au>Engel, Christoph</au><au>Jahnel, Marcus</au><au>Roldán, Édgar</au><au>Galburt, Eric A.</au><au>Cramer, Patrick</au><au>Grill, Stephan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of backtrack recovery by RNA polymerases I and II</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>113</volume><issue>11</issue><spage>2946</spage><epage>2951</epage><pages>2946-2951</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26929337</pmid><doi>10.1073/pnas.1517011113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (11), p.2946-2951 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_113_11_2946 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Diffusion Enzymes Experiments Models, Chemical Motion Optical Tweezers Protein Binding Protein Subunits RNA polymerase RNA Polymerase I - chemistry RNA Polymerase I - metabolism RNA Polymerase II - chemistry RNA Polymerase II - genetics RNA Polymerase II - metabolism RNA, Fungal - biosynthesis RNA, Messenger - biosynthesis Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Sequence Deletion Stochastic models Stochastic Processes Time Transcription Elongation, Genetic - physiology Transcription factors Transcriptional Elongation Factors - chemistry Transcriptional Elongation Factors - metabolism |
title | Mechanisms of backtrack recovery by RNA polymerases I and II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20backtrack%20recovery%20by%20RNA%20polymerases%20I%20and%20II&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lisica,%20Ana&rft.date=2016-03-15&rft.volume=113&rft.issue=11&rft.spage=2946&rft.epage=2951&rft.pages=2946-2951&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1517011113&rft_dat=%3Cjstor_pnas_%3E26468674%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779194080&rft_id=info:pmid/26929337&rft_jstor_id=26468674&rfr_iscdi=true |