Solar photothermochemical alkane reverse combustion
A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO₂ and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (10), p.2579-2584 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2584 |
---|---|
container_issue | 10 |
container_start_page | 2579 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Chanmanee, Wilaiwan Islam, Mohammad Fakrul Dennis, Brian H. MacDonnell, Frederick M. |
description | A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO₂ and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO₂ catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO₂ and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. |
doi_str_mv | 10.1073/pnas.1516945113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_113_10_2579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468591</jstor_id><sourcerecordid>26468591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-8e24a2dcda50db18b3b5c82cc1317801c9084543aaef6c71047409f2ad695f6b3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMoun6cPakLXrx0nclXm4sg4hcseFDPIU2zbte2WZNW8N8bcRX14mkO8_DyzDuE7CNMEHJ2uuxMnKBAqbhAZGtkhKAwk1zBOhkB0DwrOOVbZDvGBQAoUcAm2aJSAZMMR4Td-8aE8XLue9_PXWi9nbu2tqYZm-bZdG4c3KsL0Y2tb8sh9rXvdsnGzDTR7a3mDnm8uny4uMmmd9e3F-fTzHJUfVY4yg2tbGUEVCUWJSuFLai1yDAvAK2CggvOjHEzaXMEnnNQM2oqqcRMlmyHnH3mLoeydZV1XR9Mo5ehbk14097U-vemq-f6yb9qnisEVCngZBUQ_MvgYq_bOlrXNOkuP0SdNARlSFNz_6M5RS5BsoQe_0EXfghdauKD4oxRxWmiDn_Kf1t_VZ-AoxWQfvi9TioaQVORf-gffBKL2PvwI4HLQihk74JnmVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774332942</pqid></control><display><type>article</type><title>Solar photothermochemical alkane reverse combustion</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chanmanee, Wilaiwan ; Islam, Mohammad Fakrul ; Dennis, Brian H. ; MacDonnell, Frederick M.</creator><creatorcontrib>Chanmanee, Wilaiwan ; Islam, Mohammad Fakrul ; Dennis, Brian H. ; MacDonnell, Frederick M.</creatorcontrib><description>A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO₂ and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO₂ catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO₂ and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1516945113</identifier><identifier>PMID: 26903631</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical synthesis ; Hydrocarbons ; Photocatalysis ; Photochemistry ; Physical Sciences ; Pressure ; Spectrum analysis ; Temperature effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (10), p.2579-2584</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 8, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-8e24a2dcda50db18b3b5c82cc1317801c9084543aaef6c71047409f2ad695f6b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468591$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468591$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26903631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanmanee, Wilaiwan</creatorcontrib><creatorcontrib>Islam, Mohammad Fakrul</creatorcontrib><creatorcontrib>Dennis, Brian H.</creatorcontrib><creatorcontrib>MacDonnell, Frederick M.</creatorcontrib><title>Solar photothermochemical alkane reverse combustion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO₂ and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO₂ catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO₂ and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.</description><subject>Chemical synthesis</subject><subject>Hydrocarbons</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Spectrum analysis</subject><subject>Temperature effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMoun6cPakLXrx0nclXm4sg4hcseFDPIU2zbte2WZNW8N8bcRX14mkO8_DyzDuE7CNMEHJ2uuxMnKBAqbhAZGtkhKAwk1zBOhkB0DwrOOVbZDvGBQAoUcAm2aJSAZMMR4Td-8aE8XLue9_PXWi9nbu2tqYZm-bZdG4c3KsL0Y2tb8sh9rXvdsnGzDTR7a3mDnm8uny4uMmmd9e3F-fTzHJUfVY4yg2tbGUEVCUWJSuFLai1yDAvAK2CggvOjHEzaXMEnnNQM2oqqcRMlmyHnH3mLoeydZV1XR9Mo5ehbk14097U-vemq-f6yb9qnisEVCngZBUQ_MvgYq_bOlrXNOkuP0SdNARlSFNz_6M5RS5BsoQe_0EXfghdauKD4oxRxWmiDn_Kf1t_VZ-AoxWQfvi9TioaQVORf-gffBKL2PvwI4HLQihk74JnmVc</recordid><startdate>20160308</startdate><enddate>20160308</enddate><creator>Chanmanee, Wilaiwan</creator><creator>Islam, Mohammad Fakrul</creator><creator>Dennis, Brian H.</creator><creator>MacDonnell, Frederick M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20160308</creationdate><title>Solar photothermochemical alkane reverse combustion</title><author>Chanmanee, Wilaiwan ; Islam, Mohammad Fakrul ; Dennis, Brian H. ; MacDonnell, Frederick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-8e24a2dcda50db18b3b5c82cc1317801c9084543aaef6c71047409f2ad695f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical synthesis</topic><topic>Hydrocarbons</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Spectrum analysis</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanmanee, Wilaiwan</creatorcontrib><creatorcontrib>Islam, Mohammad Fakrul</creatorcontrib><creatorcontrib>Dennis, Brian H.</creatorcontrib><creatorcontrib>MacDonnell, Frederick M.</creatorcontrib><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chanmanee, Wilaiwan</au><au>Islam, Mohammad Fakrul</au><au>Dennis, Brian H.</au><au>MacDonnell, Frederick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar photothermochemical alkane reverse combustion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-08</date><risdate>2016</risdate><volume>113</volume><issue>10</issue><spage>2579</spage><epage>2584</epage><pages>2579-2584</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO₂ and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO₂ catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO₂ and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26903631</pmid><doi>10.1073/pnas.1516945113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (10), p.2579-2584 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_113_10_2579 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Chemical synthesis Hydrocarbons Photocatalysis Photochemistry Physical Sciences Pressure Spectrum analysis Temperature effects |
title | Solar photothermochemical alkane reverse combustion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20photothermochemical%20alkane%20reverse%20combustion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chanmanee,%20Wilaiwan&rft.date=2016-03-08&rft.volume=113&rft.issue=10&rft.spage=2579&rft.epage=2584&rft.pages=2579-2584&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1516945113&rft_dat=%3Cjstor_pnas_%3E26468591%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774332942&rft_id=info:pmid/26903631&rft_jstor_id=26468591&rfr_iscdi=true |