Joint control of terrestrial gross primary productivity by plant phenology and physiology
Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biot...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (9), p.2788-2793 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2793 |
---|---|
container_issue | 9 |
container_start_page | 2788 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Xia, Jianyang Niu, Shuli Ciais, Philippe Janssens, Ivan A. Chen, Jiquan Ammann, Christof Arain, Altaf Blanken, Peter D. Cescatti, Alessandro Bonal, Damien Buchmann, Nina Curtis, Peter S. Chen, Shiping Dong, Jinwei Flanagan, Lawrence B. Frankenberg, Christian Georgiadis, Teodoro Gough, Christopher M. Hui, Dafeng Kiely, Gerard Li, Jianwei Lund, Magnus Magliulo, Vincenzo Marcolla, Barbara Merbold, Lutz Montagnani, Leonardo Moors, Eddy J. Olesen, Jørgen E. Piao, Shilong Raschi, Antonio Roupsard, Olivier Suyker, Andrew E. Urbaniak, Marek Vaccari, Francesco P. Varlagin, Andrej Vesala, Timo Wilkinson, Matthew Weng, Ensheng Wohlfahrt, Georg Yan, Liming Luo, Yiqi |
description | Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO ₂ uptake period (CUP) and the seasonal maximal capacity of CO ₂ uptake (GPP ₘₐₓ). The product of CUP and GPP ₘₐₓ explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 ( r ² = 0.90) and GPP recovery after a fire disturbance in South Dakota ( r ² = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPP ₘₐₓ than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPP ₘₐₓ and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.
Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO ₂ fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO ₂ uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance. |
doi_str_mv | 10.1073/pnas.1413090112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_112_9_2788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26461691</jstor_id><sourcerecordid>26461691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-1cb17588a6e45d687e9276be78988e5642c27dc7d89658a8e4732eef1c21f063</originalsourceid><addsrcrecordid>eNqFks9v0zAUxyMEYmVw5gRE4gKHbn624x8ckKYJGKgSB8aBk-U4TusqtYuddOp_j7OUbuzCJU_P_ny_sb9-RfES0BkgTs63XqczoECQRAD4UTEDJGHOqESPixlCmM8FxfSkeJbSGiEkK4GeFie44gQJymfFr2_B-b40wfcxdGVoy97GaFMfne7KZQwpldvoNjrucw3NYHq3c_2-rHPf6SzdrqwPXVjuS-2b3O2Tu22fF09a3SX74lBPi-vPn64vr-aL71--Xl4s5oYj3s_B1MArITSztGqY4FZizmrLhRTCVoxig3ljeCMkq4QWlnKCrW3BYGgRI6fFh8n2Ri-tdz5_lNfRuKSCdqpzdcxnVzdDVL4by3aok6Kiyrlk8cdJnBc3tjE2p6A7dbjwrcG_O96t1DLsFCUV5lxmg_eTweqB7OpiocY1BJgJKasdZPbd4Wcx_B5yxGrjkrFdTtGGISkQiADBwOj_UcYJkfkGKKNvH6DrMESfE88UA46pxKPh-USZ8UWjbY-HBaTGSVLjJKm7ScqK1_ejOfJ_R-ceMCqPdoCVVJgLkYFXE7BOfYh3BowyYHLM48203-qg9DLmF_v5AyNgCAGtGJHkD2Nt4w8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661724924</pqid></control><display><type>article</type><title>Joint control of terrestrial gross primary productivity by plant phenology and physiology</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xia, Jianyang ; Niu, Shuli ; Ciais, Philippe ; Janssens, Ivan A. ; Chen, Jiquan ; Ammann, Christof ; Arain, Altaf ; Blanken, Peter D. ; Cescatti, Alessandro ; Bonal, Damien ; Buchmann, Nina ; Curtis, Peter S. ; Chen, Shiping ; Dong, Jinwei ; Flanagan, Lawrence B. ; Frankenberg, Christian ; Georgiadis, Teodoro ; Gough, Christopher M. ; Hui, Dafeng ; Kiely, Gerard ; Li, Jianwei ; Lund, Magnus ; Magliulo, Vincenzo ; Marcolla, Barbara ; Merbold, Lutz ; Montagnani, Leonardo ; Moors, Eddy J. ; Olesen, Jørgen E. ; Piao, Shilong ; Raschi, Antonio ; Roupsard, Olivier ; Suyker, Andrew E. ; Urbaniak, Marek ; Vaccari, Francesco P. ; Varlagin, Andrej ; Vesala, Timo ; Wilkinson, Matthew ; Weng, Ensheng ; Wohlfahrt, Georg ; Yan, Liming ; Luo, Yiqi</creator><creatorcontrib>Xia, Jianyang ; Niu, Shuli ; Ciais, Philippe ; Janssens, Ivan A. ; Chen, Jiquan ; Ammann, Christof ; Arain, Altaf ; Blanken, Peter D. ; Cescatti, Alessandro ; Bonal, Damien ; Buchmann, Nina ; Curtis, Peter S. ; Chen, Shiping ; Dong, Jinwei ; Flanagan, Lawrence B. ; Frankenberg, Christian ; Georgiadis, Teodoro ; Gough, Christopher M. ; Hui, Dafeng ; Kiely, Gerard ; Li, Jianwei ; Lund, Magnus ; Magliulo, Vincenzo ; Marcolla, Barbara ; Merbold, Lutz ; Montagnani, Leonardo ; Moors, Eddy J. ; Olesen, Jørgen E. ; Piao, Shilong ; Raschi, Antonio ; Roupsard, Olivier ; Suyker, Andrew E. ; Urbaniak, Marek ; Vaccari, Francesco P. ; Varlagin, Andrej ; Vesala, Timo ; Wilkinson, Matthew ; Weng, Ensheng ; Wohlfahrt, Georg ; Yan, Liming ; Luo, Yiqi</creatorcontrib><description>Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO ₂ uptake period (CUP) and the seasonal maximal capacity of CO ₂ uptake (GPP ₘₐₓ). The product of CUP and GPP ₘₐₓ explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 ( r ² = 0.90) and GPP recovery after a fire disturbance in South Dakota ( r ² = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPP ₘₐₓ than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPP ₘₐₓ and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.
Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO ₂ fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO ₂ uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1413090112</identifier><identifier>PMID: 25730847</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Carbon cycle ; carbon uptake ; chlorophyll fluorescence ; Climate ; climate-change ; Ecosystem ; ecosystem productivity ; ecosystems ; Flowers & plants ; forest phenology ; Life Sciences ; Models, Biological ; Phenology ; photosynthesis ; Physiology ; Plant Physiological Phenomena ; Plants ; primary productivity ; Productivity ; South Dakota ; spatial variation ; stomatal conductance ; temporal variation ; variability ; Vegetation ; vegetation phenology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2788-2793</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 3, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-1cb17588a6e45d687e9276be78988e5642c27dc7d89658a8e4732eef1c21f063</citedby><cites>FETCH-LOGICAL-c707t-1cb17588a6e45d687e9276be78988e5642c27dc7d89658a8e4732eef1c21f063</cites><orcidid>0000-0003-2309-2887 ; 0000-0003-3080-6702 ; 0000-0002-1225-9170 ; 0000-0003-2957-9071 ; 0000-0001-8560-4943 ; 0000-0002-2769-2591 ; 0000-0003-0826-2980 ; 0000-0002-0546-5857 ; 0000-0001-8057-2292 ; 0000-0003-4974-170X ; 0000-0003-0761-9458 ; 0000-0001-9602-8603 ; 0000-0002-2549-5236 ; 0000-0002-1319-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26461691$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26461691$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25730847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01268995$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Jianyang</creatorcontrib><creatorcontrib>Niu, Shuli</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Janssens, Ivan A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Ammann, Christof</creatorcontrib><creatorcontrib>Arain, Altaf</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Cescatti, Alessandro</creatorcontrib><creatorcontrib>Bonal, Damien</creatorcontrib><creatorcontrib>Buchmann, Nina</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><creatorcontrib>Chen, Shiping</creatorcontrib><creatorcontrib>Dong, Jinwei</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Georgiadis, Teodoro</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Hui, Dafeng</creatorcontrib><creatorcontrib>Kiely, Gerard</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Lund, Magnus</creatorcontrib><creatorcontrib>Magliulo, Vincenzo</creatorcontrib><creatorcontrib>Marcolla, Barbara</creatorcontrib><creatorcontrib>Merbold, Lutz</creatorcontrib><creatorcontrib>Montagnani, Leonardo</creatorcontrib><creatorcontrib>Moors, Eddy J.</creatorcontrib><creatorcontrib>Olesen, Jørgen E.</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Raschi, Antonio</creatorcontrib><creatorcontrib>Roupsard, Olivier</creatorcontrib><creatorcontrib>Suyker, Andrew E.</creatorcontrib><creatorcontrib>Urbaniak, Marek</creatorcontrib><creatorcontrib>Vaccari, Francesco P.</creatorcontrib><creatorcontrib>Varlagin, Andrej</creatorcontrib><creatorcontrib>Vesala, Timo</creatorcontrib><creatorcontrib>Wilkinson, Matthew</creatorcontrib><creatorcontrib>Weng, Ensheng</creatorcontrib><creatorcontrib>Wohlfahrt, Georg</creatorcontrib><creatorcontrib>Yan, Liming</creatorcontrib><creatorcontrib>Luo, Yiqi</creatorcontrib><title>Joint control of terrestrial gross primary productivity by plant phenology and physiology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO ₂ uptake period (CUP) and the seasonal maximal capacity of CO ₂ uptake (GPP ₘₐₓ). The product of CUP and GPP ₘₐₓ explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 ( r ² = 0.90) and GPP recovery after a fire disturbance in South Dakota ( r ² = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPP ₘₐₓ than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPP ₘₐₓ and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.
Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO ₂ fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO ₂ uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance.</description><subject>Biological Sciences</subject><subject>Carbon cycle</subject><subject>carbon uptake</subject><subject>chlorophyll fluorescence</subject><subject>Climate</subject><subject>climate-change</subject><subject>Ecosystem</subject><subject>ecosystem productivity</subject><subject>ecosystems</subject><subject>Flowers & plants</subject><subject>forest phenology</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Phenology</subject><subject>photosynthesis</subject><subject>Physiology</subject><subject>Plant Physiological Phenomena</subject><subject>Plants</subject><subject>primary productivity</subject><subject>Productivity</subject><subject>South Dakota</subject><subject>spatial variation</subject><subject>stomatal conductance</subject><subject>temporal variation</subject><subject>variability</subject><subject>Vegetation</subject><subject>vegetation phenology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9v0zAUxyMEYmVw5gRE4gKHbn624x8ckKYJGKgSB8aBk-U4TusqtYuddOp_j7OUbuzCJU_P_ny_sb9-RfES0BkgTs63XqczoECQRAD4UTEDJGHOqESPixlCmM8FxfSkeJbSGiEkK4GeFie44gQJymfFr2_B-b40wfcxdGVoy97GaFMfne7KZQwpldvoNjrucw3NYHq3c_2-rHPf6SzdrqwPXVjuS-2b3O2Tu22fF09a3SX74lBPi-vPn64vr-aL71--Xl4s5oYj3s_B1MArITSztGqY4FZizmrLhRTCVoxig3ljeCMkq4QWlnKCrW3BYGgRI6fFh8n2Ri-tdz5_lNfRuKSCdqpzdcxnVzdDVL4by3aok6Kiyrlk8cdJnBc3tjE2p6A7dbjwrcG_O96t1DLsFCUV5lxmg_eTweqB7OpiocY1BJgJKasdZPbd4Wcx_B5yxGrjkrFdTtGGISkQiADBwOj_UcYJkfkGKKNvH6DrMESfE88UA46pxKPh-USZ8UWjbY-HBaTGSVLjJKm7ScqK1_ejOfJ_R-ceMCqPdoCVVJgLkYFXE7BOfYh3BowyYHLM48203-qg9DLmF_v5AyNgCAGtGJHkD2Nt4w8</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>Xia, Jianyang</creator><creator>Niu, Shuli</creator><creator>Ciais, Philippe</creator><creator>Janssens, Ivan A.</creator><creator>Chen, Jiquan</creator><creator>Ammann, Christof</creator><creator>Arain, Altaf</creator><creator>Blanken, Peter D.</creator><creator>Cescatti, Alessandro</creator><creator>Bonal, Damien</creator><creator>Buchmann, Nina</creator><creator>Curtis, Peter S.</creator><creator>Chen, Shiping</creator><creator>Dong, Jinwei</creator><creator>Flanagan, Lawrence B.</creator><creator>Frankenberg, Christian</creator><creator>Georgiadis, Teodoro</creator><creator>Gough, Christopher M.</creator><creator>Hui, Dafeng</creator><creator>Kiely, Gerard</creator><creator>Li, Jianwei</creator><creator>Lund, Magnus</creator><creator>Magliulo, Vincenzo</creator><creator>Marcolla, Barbara</creator><creator>Merbold, Lutz</creator><creator>Montagnani, Leonardo</creator><creator>Moors, Eddy J.</creator><creator>Olesen, Jørgen E.</creator><creator>Piao, Shilong</creator><creator>Raschi, Antonio</creator><creator>Roupsard, Olivier</creator><creator>Suyker, Andrew E.</creator><creator>Urbaniak, Marek</creator><creator>Vaccari, Francesco P.</creator><creator>Varlagin, Andrej</creator><creator>Vesala, Timo</creator><creator>Wilkinson, Matthew</creator><creator>Weng, Ensheng</creator><creator>Wohlfahrt, Georg</creator><creator>Yan, Liming</creator><creator>Luo, Yiqi</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>QVL</scope><orcidid>https://orcid.org/0000-0003-2309-2887</orcidid><orcidid>https://orcid.org/0000-0003-3080-6702</orcidid><orcidid>https://orcid.org/0000-0002-1225-9170</orcidid><orcidid>https://orcid.org/0000-0003-2957-9071</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-2769-2591</orcidid><orcidid>https://orcid.org/0000-0003-0826-2980</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0003-4974-170X</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid><orcidid>https://orcid.org/0000-0001-9602-8603</orcidid><orcidid>https://orcid.org/0000-0002-2549-5236</orcidid><orcidid>https://orcid.org/0000-0002-1319-142X</orcidid></search><sort><creationdate>20150303</creationdate><title>Joint control of terrestrial gross primary productivity by plant phenology and physiology</title><author>Xia, Jianyang ; Niu, Shuli ; Ciais, Philippe ; Janssens, Ivan A. ; Chen, Jiquan ; Ammann, Christof ; Arain, Altaf ; Blanken, Peter D. ; Cescatti, Alessandro ; Bonal, Damien ; Buchmann, Nina ; Curtis, Peter S. ; Chen, Shiping ; Dong, Jinwei ; Flanagan, Lawrence B. ; Frankenberg, Christian ; Georgiadis, Teodoro ; Gough, Christopher M. ; Hui, Dafeng ; Kiely, Gerard ; Li, Jianwei ; Lund, Magnus ; Magliulo, Vincenzo ; Marcolla, Barbara ; Merbold, Lutz ; Montagnani, Leonardo ; Moors, Eddy J. ; Olesen, Jørgen E. ; Piao, Shilong ; Raschi, Antonio ; Roupsard, Olivier ; Suyker, Andrew E. ; Urbaniak, Marek ; Vaccari, Francesco P. ; Varlagin, Andrej ; Vesala, Timo ; Wilkinson, Matthew ; Weng, Ensheng ; Wohlfahrt, Georg ; Yan, Liming ; Luo, Yiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-1cb17588a6e45d687e9276be78988e5642c27dc7d89658a8e4732eef1c21f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Sciences</topic><topic>Carbon cycle</topic><topic>carbon uptake</topic><topic>chlorophyll fluorescence</topic><topic>Climate</topic><topic>climate-change</topic><topic>Ecosystem</topic><topic>ecosystem productivity</topic><topic>ecosystems</topic><topic>Flowers & plants</topic><topic>forest phenology</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Phenology</topic><topic>photosynthesis</topic><topic>Physiology</topic><topic>Plant Physiological Phenomena</topic><topic>Plants</topic><topic>primary productivity</topic><topic>Productivity</topic><topic>South Dakota</topic><topic>spatial variation</topic><topic>stomatal conductance</topic><topic>temporal variation</topic><topic>variability</topic><topic>Vegetation</topic><topic>vegetation phenology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Jianyang</creatorcontrib><creatorcontrib>Niu, Shuli</creatorcontrib><creatorcontrib>Ciais, Philippe</creatorcontrib><creatorcontrib>Janssens, Ivan A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Ammann, Christof</creatorcontrib><creatorcontrib>Arain, Altaf</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Cescatti, Alessandro</creatorcontrib><creatorcontrib>Bonal, Damien</creatorcontrib><creatorcontrib>Buchmann, Nina</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><creatorcontrib>Chen, Shiping</creatorcontrib><creatorcontrib>Dong, Jinwei</creatorcontrib><creatorcontrib>Flanagan, Lawrence B.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Georgiadis, Teodoro</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Hui, Dafeng</creatorcontrib><creatorcontrib>Kiely, Gerard</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Lund, Magnus</creatorcontrib><creatorcontrib>Magliulo, Vincenzo</creatorcontrib><creatorcontrib>Marcolla, Barbara</creatorcontrib><creatorcontrib>Merbold, Lutz</creatorcontrib><creatorcontrib>Montagnani, Leonardo</creatorcontrib><creatorcontrib>Moors, Eddy J.</creatorcontrib><creatorcontrib>Olesen, Jørgen E.</creatorcontrib><creatorcontrib>Piao, Shilong</creatorcontrib><creatorcontrib>Raschi, Antonio</creatorcontrib><creatorcontrib>Roupsard, Olivier</creatorcontrib><creatorcontrib>Suyker, Andrew E.</creatorcontrib><creatorcontrib>Urbaniak, Marek</creatorcontrib><creatorcontrib>Vaccari, Francesco P.</creatorcontrib><creatorcontrib>Varlagin, Andrej</creatorcontrib><creatorcontrib>Vesala, Timo</creatorcontrib><creatorcontrib>Wilkinson, Matthew</creatorcontrib><creatorcontrib>Weng, Ensheng</creatorcontrib><creatorcontrib>Wohlfahrt, Georg</creatorcontrib><creatorcontrib>Yan, Liming</creatorcontrib><creatorcontrib>Luo, Yiqi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Jianyang</au><au>Niu, Shuli</au><au>Ciais, Philippe</au><au>Janssens, Ivan A.</au><au>Chen, Jiquan</au><au>Ammann, Christof</au><au>Arain, Altaf</au><au>Blanken, Peter D.</au><au>Cescatti, Alessandro</au><au>Bonal, Damien</au><au>Buchmann, Nina</au><au>Curtis, Peter S.</au><au>Chen, Shiping</au><au>Dong, Jinwei</au><au>Flanagan, Lawrence B.</au><au>Frankenberg, Christian</au><au>Georgiadis, Teodoro</au><au>Gough, Christopher M.</au><au>Hui, Dafeng</au><au>Kiely, Gerard</au><au>Li, Jianwei</au><au>Lund, Magnus</au><au>Magliulo, Vincenzo</au><au>Marcolla, Barbara</au><au>Merbold, Lutz</au><au>Montagnani, Leonardo</au><au>Moors, Eddy J.</au><au>Olesen, Jørgen E.</au><au>Piao, Shilong</au><au>Raschi, Antonio</au><au>Roupsard, Olivier</au><au>Suyker, Andrew E.</au><au>Urbaniak, Marek</au><au>Vaccari, Francesco P.</au><au>Varlagin, Andrej</au><au>Vesala, Timo</au><au>Wilkinson, Matthew</au><au>Weng, Ensheng</au><au>Wohlfahrt, Georg</au><au>Yan, Liming</au><au>Luo, Yiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint control of terrestrial gross primary productivity by plant phenology and physiology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>112</volume><issue>9</issue><spage>2788</spage><epage>2793</epage><pages>2788-2793</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO ₂ uptake period (CUP) and the seasonal maximal capacity of CO ₂ uptake (GPP ₘₐₓ). The product of CUP and GPP ₘₐₓ explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 ( r ² = 0.90) and GPP recovery after a fire disturbance in South Dakota ( r ² = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPP ₘₐₓ than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPP ₘₐₓ and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.
Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO ₂ fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO ₂ uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25730847</pmid><doi>10.1073/pnas.1413090112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2309-2887</orcidid><orcidid>https://orcid.org/0000-0003-3080-6702</orcidid><orcidid>https://orcid.org/0000-0002-1225-9170</orcidid><orcidid>https://orcid.org/0000-0003-2957-9071</orcidid><orcidid>https://orcid.org/0000-0001-8560-4943</orcidid><orcidid>https://orcid.org/0000-0002-2769-2591</orcidid><orcidid>https://orcid.org/0000-0003-0826-2980</orcidid><orcidid>https://orcid.org/0000-0002-0546-5857</orcidid><orcidid>https://orcid.org/0000-0001-8057-2292</orcidid><orcidid>https://orcid.org/0000-0003-4974-170X</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid><orcidid>https://orcid.org/0000-0001-9602-8603</orcidid><orcidid>https://orcid.org/0000-0002-2549-5236</orcidid><orcidid>https://orcid.org/0000-0002-1319-142X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2788-2793 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_112_9_2788 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Carbon cycle carbon uptake chlorophyll fluorescence Climate climate-change Ecosystem ecosystem productivity ecosystems Flowers & plants forest phenology Life Sciences Models, Biological Phenology photosynthesis Physiology Plant Physiological Phenomena Plants primary productivity Productivity South Dakota spatial variation stomatal conductance temporal variation variability Vegetation vegetation phenology |
title | Joint control of terrestrial gross primary productivity by plant phenology and physiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20control%20of%20terrestrial%20gross%20primary%20productivity%20by%20plant%20phenology%20and%20physiology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xia,%20Jianyang&rft.date=2015-03-03&rft.volume=112&rft.issue=9&rft.spage=2788&rft.epage=2793&rft.pages=2788-2793&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1413090112&rft_dat=%3Cjstor_pnas_%3E26461691%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661724924&rft_id=info:pmid/25730847&rft_jstor_id=26461691&rfr_iscdi=true |