Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes
Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials cau...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12332-12337 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12337 |
---|---|
container_issue | 40 |
container_start_page | 12332 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Guo, Chuan Fei Liu, Qihan Wang, Guohui Wang, Yecheng Shi, Zhengzheng Suo, Zhigang Chu, Ching-Wu Ren, Zhifeng |
description | Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics. |
doi_str_mv | 10.1073/pnas.1516873112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_112_40_12332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465355</jstor_id><sourcerecordid>26465355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAkUwYVD044_E1-QUEUBqVIvcLYm3kk3qyQOtoPEf4_DLkvhZMnzm-f3_IriJYNLBrW4mieMl0wx3dSCMf6o2DAwrNLSwONiA8DrqpFcnhXPYtwDgFENPC3OuBaGK1FvirsbTP39QlUXiC7KuMwUYgqU3A7bId-kgFOcMdCULkqctmXbe-fHOa_leTlSwqGkgVwKfkvxefGkwyHSi-N5Xny7-fj1-nN1e_fpy_WH28pJo1KFbatZ1zndSOAgHXWotzVvAJ1SEkgjSoPOuJoag9o57rhW0JoWuWjBifPi_UF3XtqRti7bCzjYOfQjhp_WY2__nUz9zt77H1ZqELLmWeDNQcDH1Nvo-kRu5_w05SSWcaGYqDP07vhK8N8XismOfXQ0DDiRX6JldTavmBGr3tv_0L1fwpT_YKWYkQxAZ-rqQLngYwzUnRwzsGujdm3U_m00b7x-GPTE_6kwA-URWDdPcoxbCWuQ395eHZB9TD48kJBaCaXEL1gDsZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721941006</pqid></control><display><type>article</type><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</creator><creatorcontrib>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</creatorcontrib><description>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1516873112</identifier><identifier>PMID: 26392537</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Animals ; Cell Culture Techniques - instrumentation ; Cell Proliferation ; Cells, Cultured ; Electric Conductivity ; Electrodes ; Electronics - instrumentation ; Embryo, Mammalian - cytology ; Equipment Design ; Fibroblasts - physiology ; Gold - chemistry ; Materials fatigue ; Metals - chemistry ; Mice ; Microscopy, Electron, Scanning ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Physical Sciences ; Pliability ; Reproducibility of Results ; Stress-strain curves ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12332-12337</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</citedby><cites>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465355$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465355$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235137$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chuan Fei</creatorcontrib><creatorcontrib>Liu, Qihan</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Wang, Yecheng</creatorcontrib><creatorcontrib>Shi, Zhengzheng</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><creatorcontrib>Chu, Ching-Wu</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Electronics - instrumentation</subject><subject>Embryo, Mammalian - cytology</subject><subject>Equipment Design</subject><subject>Fibroblasts - physiology</subject><subject>Gold - chemistry</subject><subject>Materials fatigue</subject><subject>Metals - chemistry</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Physical Sciences</subject><subject>Pliability</subject><subject>Reproducibility of Results</subject><subject>Stress-strain curves</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAkUwYVD044_E1-QUEUBqVIvcLYm3kk3qyQOtoPEf4_DLkvhZMnzm-f3_IriJYNLBrW4mieMl0wx3dSCMf6o2DAwrNLSwONiA8DrqpFcnhXPYtwDgFENPC3OuBaGK1FvirsbTP39QlUXiC7KuMwUYgqU3A7bId-kgFOcMdCULkqctmXbe-fHOa_leTlSwqGkgVwKfkvxefGkwyHSi-N5Xny7-fj1-nN1e_fpy_WH28pJo1KFbatZ1zndSOAgHXWotzVvAJ1SEkgjSoPOuJoag9o57rhW0JoWuWjBifPi_UF3XtqRti7bCzjYOfQjhp_WY2__nUz9zt77H1ZqELLmWeDNQcDH1Nvo-kRu5_w05SSWcaGYqDP07vhK8N8XismOfXQ0DDiRX6JldTavmBGr3tv_0L1fwpT_YKWYkQxAZ-rqQLngYwzUnRwzsGujdm3U_m00b7x-GPTE_6kwA-URWDdPcoxbCWuQ395eHZB9TD48kJBaCaXEL1gDsZc</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Guo, Chuan Fei</creator><creator>Liu, Qihan</creator><creator>Wang, Guohui</creator><creator>Wang, Yecheng</creator><creator>Shi, Zhengzheng</creator><creator>Suo, Zhigang</creator><creator>Chu, Ching-Wu</creator><creator>Ren, Zhifeng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><author>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Electronics - instrumentation</topic><topic>Embryo, Mammalian - cytology</topic><topic>Equipment Design</topic><topic>Fibroblasts - physiology</topic><topic>Gold - chemistry</topic><topic>Materials fatigue</topic><topic>Metals - chemistry</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Physical Sciences</topic><topic>Pliability</topic><topic>Reproducibility of Results</topic><topic>Stress-strain curves</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chuan Fei</creatorcontrib><creatorcontrib>Liu, Qihan</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Wang, Yecheng</creatorcontrib><creatorcontrib>Shi, Zhengzheng</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><creatorcontrib>Chu, Ching-Wu</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chuan Fei</au><au>Liu, Qihan</au><au>Wang, Guohui</au><au>Wang, Yecheng</au><au>Shi, Zhengzheng</au><au>Suo, Zhigang</au><au>Chu, Ching-Wu</au><au>Ren, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12332</spage><epage>12337</epage><pages>12332-12337</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392537</pmid><doi>10.1073/pnas.1516873112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12332-12337 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_112_40_12332 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adhesion Animals Cell Culture Techniques - instrumentation Cell Proliferation Cells, Cultured Electric Conductivity Electrodes Electronics - instrumentation Embryo, Mammalian - cytology Equipment Design Fibroblasts - physiology Gold - chemistry Materials fatigue Metals - chemistry Mice Microscopy, Electron, Scanning Nanostructures - chemistry Nanostructures - ultrastructure Physical Sciences Pliability Reproducibility of Results Stress-strain curves Topology |
title | Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue-free,%20superstretchable,%20transparent,%20and%20biocompatible%20metal%20electrodes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guo,%20Chuan%20Fei&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12332&rft.epage=12337&rft.pages=12332-12337&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1516873112&rft_dat=%3Cjstor_pnas_%3E26465355%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721941006&rft_id=info:pmid/26392537&rft_jstor_id=26465355&rfr_iscdi=true |