Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes

Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials cau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12332-12337
Hauptverfasser: Guo, Chuan Fei, Liu, Qihan, Wang, Guohui, Wang, Yecheng, Shi, Zhengzheng, Suo, Zhigang, Chu, Ching-Wu, Ren, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12337
container_issue 40
container_start_page 12332
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Guo, Chuan Fei
Liu, Qihan
Wang, Guohui
Wang, Yecheng
Shi, Zhengzheng
Suo, Zhigang
Chu, Ching-Wu
Ren, Zhifeng
description Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.
doi_str_mv 10.1073/pnas.1516873112
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_112_40_12332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465355</jstor_id><sourcerecordid>26465355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAkUwYVD044_E1-QUEUBqVIvcLYm3kk3qyQOtoPEf4_DLkvhZMnzm-f3_IriJYNLBrW4mieMl0wx3dSCMf6o2DAwrNLSwONiA8DrqpFcnhXPYtwDgFENPC3OuBaGK1FvirsbTP39QlUXiC7KuMwUYgqU3A7bId-kgFOcMdCULkqctmXbe-fHOa_leTlSwqGkgVwKfkvxefGkwyHSi-N5Xny7-fj1-nN1e_fpy_WH28pJo1KFbatZ1zndSOAgHXWotzVvAJ1SEkgjSoPOuJoag9o57rhW0JoWuWjBifPi_UF3XtqRti7bCzjYOfQjhp_WY2__nUz9zt77H1ZqELLmWeDNQcDH1Nvo-kRu5_w05SSWcaGYqDP07vhK8N8XismOfXQ0DDiRX6JldTavmBGr3tv_0L1fwpT_YKWYkQxAZ-rqQLngYwzUnRwzsGujdm3U_m00b7x-GPTE_6kwA-URWDdPcoxbCWuQ395eHZB9TD48kJBaCaXEL1gDsZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721941006</pqid></control><display><type>article</type><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</creator><creatorcontrib>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</creatorcontrib><description>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1516873112</identifier><identifier>PMID: 26392537</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Animals ; Cell Culture Techniques - instrumentation ; Cell Proliferation ; Cells, Cultured ; Electric Conductivity ; Electrodes ; Electronics - instrumentation ; Embryo, Mammalian - cytology ; Equipment Design ; Fibroblasts - physiology ; Gold - chemistry ; Materials fatigue ; Metals - chemistry ; Mice ; Microscopy, Electron, Scanning ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Physical Sciences ; Pliability ; Reproducibility of Results ; Stress-strain curves ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12332-12337</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</citedby><cites>FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465355$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465355$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235137$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chuan Fei</creatorcontrib><creatorcontrib>Liu, Qihan</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Wang, Yecheng</creatorcontrib><creatorcontrib>Shi, Zhengzheng</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><creatorcontrib>Chu, Ching-Wu</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Electronics - instrumentation</subject><subject>Embryo, Mammalian - cytology</subject><subject>Equipment Design</subject><subject>Fibroblasts - physiology</subject><subject>Gold - chemistry</subject><subject>Materials fatigue</subject><subject>Metals - chemistry</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Physical Sciences</subject><subject>Pliability</subject><subject>Reproducibility of Results</subject><subject>Stress-strain curves</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAkUwYVD044_E1-QUEUBqVIvcLYm3kk3qyQOtoPEf4_DLkvhZMnzm-f3_IriJYNLBrW4mieMl0wx3dSCMf6o2DAwrNLSwONiA8DrqpFcnhXPYtwDgFENPC3OuBaGK1FvirsbTP39QlUXiC7KuMwUYgqU3A7bId-kgFOcMdCULkqctmXbe-fHOa_leTlSwqGkgVwKfkvxefGkwyHSi-N5Xny7-fj1-nN1e_fpy_WH28pJo1KFbatZ1zndSOAgHXWotzVvAJ1SEkgjSoPOuJoag9o57rhW0JoWuWjBifPi_UF3XtqRti7bCzjYOfQjhp_WY2__nUz9zt77H1ZqELLmWeDNQcDH1Nvo-kRu5_w05SSWcaGYqDP07vhK8N8XismOfXQ0DDiRX6JldTavmBGr3tv_0L1fwpT_YKWYkQxAZ-rqQLngYwzUnRwzsGujdm3U_m00b7x-GPTE_6kwA-URWDdPcoxbCWuQ395eHZB9TD48kJBaCaXEL1gDsZc</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Guo, Chuan Fei</creator><creator>Liu, Qihan</creator><creator>Wang, Guohui</creator><creator>Wang, Yecheng</creator><creator>Shi, Zhengzheng</creator><creator>Suo, Zhigang</creator><creator>Chu, Ching-Wu</creator><creator>Ren, Zhifeng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</title><author>Guo, Chuan Fei ; Liu, Qihan ; Wang, Guohui ; Wang, Yecheng ; Shi, Zhengzheng ; Suo, Zhigang ; Chu, Ching-Wu ; Ren, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-abb61ffc6840204cefa6d7280ac5540e6aa49ac9c7e89a6cc2c2650b9ba23b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Electronics - instrumentation</topic><topic>Embryo, Mammalian - cytology</topic><topic>Equipment Design</topic><topic>Fibroblasts - physiology</topic><topic>Gold - chemistry</topic><topic>Materials fatigue</topic><topic>Metals - chemistry</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Physical Sciences</topic><topic>Pliability</topic><topic>Reproducibility of Results</topic><topic>Stress-strain curves</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chuan Fei</creatorcontrib><creatorcontrib>Liu, Qihan</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Wang, Yecheng</creatorcontrib><creatorcontrib>Shi, Zhengzheng</creatorcontrib><creatorcontrib>Suo, Zhigang</creatorcontrib><creatorcontrib>Chu, Ching-Wu</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chuan Fei</au><au>Liu, Qihan</au><au>Wang, Guohui</au><au>Wang, Yecheng</au><au>Shi, Zhengzheng</au><au>Suo, Zhigang</au><au>Chu, Ching-Wu</au><au>Ren, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12332</spage><epage>12337</epage><pages>12332-12337</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392537</pmid><doi>10.1073/pnas.1516873112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12332-12337
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_112_40_12332
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adhesion
Animals
Cell Culture Techniques - instrumentation
Cell Proliferation
Cells, Cultured
Electric Conductivity
Electrodes
Electronics - instrumentation
Embryo, Mammalian - cytology
Equipment Design
Fibroblasts - physiology
Gold - chemistry
Materials fatigue
Metals - chemistry
Mice
Microscopy, Electron, Scanning
Nanostructures - chemistry
Nanostructures - ultrastructure
Physical Sciences
Pliability
Reproducibility of Results
Stress-strain curves
Topology
title Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue-free,%20superstretchable,%20transparent,%20and%20biocompatible%20metal%20electrodes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guo,%20Chuan%20Fei&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12332&rft.epage=12337&rft.pages=12332-12337&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1516873112&rft_dat=%3Cjstor_pnas_%3E26465355%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721941006&rft_id=info:pmid/26392537&rft_jstor_id=26465355&rfr_iscdi=true