Topological sensitivity analysis for systems biology

Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (52), p.18507-18512
Hauptverfasser: Babtie, Ann C., Kirk, Paul, Stumpf, Michael P. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18512
container_issue 52
container_start_page 18507
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Babtie, Ann C.
Kirk, Paul
Stumpf, Michael P. H.
description Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences. Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.
doi_str_mv 10.1073/pnas.1414026112
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_52_18507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43278875</jstor_id><sourcerecordid>43278875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS3UqoS0557arsSFy8L4a9e-ICEEtBJSD4Wz5Th26mizTj0bpP3vcUga2l568uH95nnePEI-Ujin0PKLdW_xnAoqgDWUsiMyoaBp3QgNb8gEgLW1EkwckxPEJQBoqeAdOWZSUiaFmBDxkNapS4vobFeh7zEO8SkOY2V7240YsQopVzji4FdYzeKWHd-Tt8F26D_s3yl5vL15uP5a33-_-3Z9dV87yeRQWy4F-LmzwDx12s6Ubbn0jIeySBCugbkS82YetFAt5zwox2au5FKBgdXAp-Ry57vezFbFyPdDtp1Z57iyeTTJRvO30sefZpGejGBKSK6KwdneIKdfG4-DWUV0vuts79MGDVXAQTWs_P5ftClXZlK_rHX6D7pMm1zu9ULJtpXAm0Jd7CiXE2L24bA3BbMtz2zLM6_llYnPf8Y98L_bKkC1B7aTBztKjWQliyymU_JphyxxSPnACM5apVpZ9C87Pdhk7CJHNI8_GNAGgHKlQfNn6YSyPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645775036</pqid></control><display><type>article</type><title>Topological sensitivity analysis for systems biology</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</creator><creatorcontrib>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</creatorcontrib><description>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences. Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1414026112</identifier><identifier>PMID: 25512544</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Architectural models ; Biological Sciences ; Datasets ; Dynamic modeling ; Inference ; Mathematical models ; Modeling ; Models, Biological ; Odes ; Ordinary differential equations ; Parametric models ; Photochemistry ; Physical properties ; Physical Sciences ; Sensitivity analysis ; Simulations ; Statistical inference ; systems analysis ; Systems Biology - methods ; Topology ; uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18507-18512</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</citedby><cites>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43278875$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43278875$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babtie, Ann C.</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><title>Topological sensitivity analysis for systems biology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences. Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</description><subject>Architectural models</subject><subject>Biological Sciences</subject><subject>Datasets</subject><subject>Dynamic modeling</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Odes</subject><subject>Ordinary differential equations</subject><subject>Parametric models</subject><subject>Photochemistry</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Sensitivity analysis</subject><subject>Simulations</subject><subject>Statistical inference</subject><subject>systems analysis</subject><subject>Systems Biology - methods</subject><subject>Topology</subject><subject>uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1PGzEQxS3UqoS0557arsSFy8L4a9e-ICEEtBJSD4Wz5Th26mizTj0bpP3vcUga2l568uH95nnePEI-Ujin0PKLdW_xnAoqgDWUsiMyoaBp3QgNb8gEgLW1EkwckxPEJQBoqeAdOWZSUiaFmBDxkNapS4vobFeh7zEO8SkOY2V7240YsQopVzji4FdYzeKWHd-Tt8F26D_s3yl5vL15uP5a33-_-3Z9dV87yeRQWy4F-LmzwDx12s6Ubbn0jIeySBCugbkS82YetFAt5zwox2au5FKBgdXAp-Ry57vezFbFyPdDtp1Z57iyeTTJRvO30sefZpGejGBKSK6KwdneIKdfG4-DWUV0vuts79MGDVXAQTWs_P5ftClXZlK_rHX6D7pMm1zu9ULJtpXAm0Jd7CiXE2L24bA3BbMtz2zLM6_llYnPf8Y98L_bKkC1B7aTBztKjWQliyymU_JphyxxSPnACM5apVpZ9C87Pdhk7CJHNI8_GNAGgHKlQfNn6YSyPw</recordid><startdate>20141230</startdate><enddate>20141230</enddate><creator>Babtie, Ann C.</creator><creator>Kirk, Paul</creator><creator>Stumpf, Michael P. H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141230</creationdate><title>Topological sensitivity analysis for systems biology</title><author>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Architectural models</topic><topic>Biological Sciences</topic><topic>Datasets</topic><topic>Dynamic modeling</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Odes</topic><topic>Ordinary differential equations</topic><topic>Parametric models</topic><topic>Photochemistry</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Sensitivity analysis</topic><topic>Simulations</topic><topic>Statistical inference</topic><topic>systems analysis</topic><topic>Systems Biology - methods</topic><topic>Topology</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babtie, Ann C.</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babtie, Ann C.</au><au>Kirk, Paul</au><au>Stumpf, Michael P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological sensitivity analysis for systems biology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-30</date><risdate>2014</risdate><volume>111</volume><issue>52</issue><spage>18507</spage><epage>18512</epage><pages>18507-18512</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences. Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25512544</pmid><doi>10.1073/pnas.1414026112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18507-18512
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_111_52_18507
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Architectural models
Biological Sciences
Datasets
Dynamic modeling
Inference
Mathematical models
Modeling
Models, Biological
Odes
Ordinary differential equations
Parametric models
Photochemistry
Physical properties
Physical Sciences
Sensitivity analysis
Simulations
Statistical inference
systems analysis
Systems Biology - methods
Topology
uncertainty
title Topological sensitivity analysis for systems biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20sensitivity%20analysis%20for%20systems%20biology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Babtie,%20Ann%20C.&rft.date=2014-12-30&rft.volume=111&rft.issue=52&rft.spage=18507&rft.epage=18512&rft.pages=18507-18512&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1414026112&rft_dat=%3Cjstor_pnas_%3E43278875%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645775036&rft_id=info:pmid/25512544&rft_jstor_id=43278875&rfr_iscdi=true