Topological sensitivity analysis for systems biology
Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critica...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (52), p.18507-18512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18512 |
---|---|
container_issue | 52 |
container_start_page | 18507 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Babtie, Ann C. Kirk, Paul Stumpf, Michael P. H. |
description | Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences.
Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions. |
doi_str_mv | 10.1073/pnas.1414026112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_52_18507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43278875</jstor_id><sourcerecordid>43278875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS3UqoS0557arsSFy8L4a9e-ICEEtBJSD4Wz5Th26mizTj0bpP3vcUga2l568uH95nnePEI-Ujin0PKLdW_xnAoqgDWUsiMyoaBp3QgNb8gEgLW1EkwckxPEJQBoqeAdOWZSUiaFmBDxkNapS4vobFeh7zEO8SkOY2V7240YsQopVzji4FdYzeKWHd-Tt8F26D_s3yl5vL15uP5a33-_-3Z9dV87yeRQWy4F-LmzwDx12s6Ubbn0jIeySBCugbkS82YetFAt5zwox2au5FKBgdXAp-Ry57vezFbFyPdDtp1Z57iyeTTJRvO30sefZpGejGBKSK6KwdneIKdfG4-DWUV0vuts79MGDVXAQTWs_P5ftClXZlK_rHX6D7pMm1zu9ULJtpXAm0Jd7CiXE2L24bA3BbMtz2zLM6_llYnPf8Y98L_bKkC1B7aTBztKjWQliyymU_JphyxxSPnACM5apVpZ9C87Pdhk7CJHNI8_GNAGgHKlQfNn6YSyPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645775036</pqid></control><display><type>article</type><title>Topological sensitivity analysis for systems biology</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</creator><creatorcontrib>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</creatorcontrib><description>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences.
Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1414026112</identifier><identifier>PMID: 25512544</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Architectural models ; Biological Sciences ; Datasets ; Dynamic modeling ; Inference ; Mathematical models ; Modeling ; Models, Biological ; Odes ; Ordinary differential equations ; Parametric models ; Photochemistry ; Physical properties ; Physical Sciences ; Sensitivity analysis ; Simulations ; Statistical inference ; systems analysis ; Systems Biology - methods ; Topology ; uncertainty</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18507-18512</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</citedby><cites>FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43278875$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43278875$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25512544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babtie, Ann C.</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><title>Topological sensitivity analysis for systems biology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences.
Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</description><subject>Architectural models</subject><subject>Biological Sciences</subject><subject>Datasets</subject><subject>Dynamic modeling</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Odes</subject><subject>Ordinary differential equations</subject><subject>Parametric models</subject><subject>Photochemistry</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Sensitivity analysis</subject><subject>Simulations</subject><subject>Statistical inference</subject><subject>systems analysis</subject><subject>Systems Biology - methods</subject><subject>Topology</subject><subject>uncertainty</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1PGzEQxS3UqoS0557arsSFy8L4a9e-ICEEtBJSD4Wz5Th26mizTj0bpP3vcUga2l568uH95nnePEI-Ujin0PKLdW_xnAoqgDWUsiMyoaBp3QgNb8gEgLW1EkwckxPEJQBoqeAdOWZSUiaFmBDxkNapS4vobFeh7zEO8SkOY2V7240YsQopVzji4FdYzeKWHd-Tt8F26D_s3yl5vL15uP5a33-_-3Z9dV87yeRQWy4F-LmzwDx12s6Ubbn0jIeySBCugbkS82YetFAt5zwox2au5FKBgdXAp-Ry57vezFbFyPdDtp1Z57iyeTTJRvO30sefZpGejGBKSK6KwdneIKdfG4-DWUV0vuts79MGDVXAQTWs_P5ftClXZlK_rHX6D7pMm1zu9ULJtpXAm0Jd7CiXE2L24bA3BbMtz2zLM6_llYnPf8Y98L_bKkC1B7aTBztKjWQliyymU_JphyxxSPnACM5apVpZ9C87Pdhk7CJHNI8_GNAGgHKlQfNn6YSyPw</recordid><startdate>20141230</startdate><enddate>20141230</enddate><creator>Babtie, Ann C.</creator><creator>Kirk, Paul</creator><creator>Stumpf, Michael P. H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141230</creationdate><title>Topological sensitivity analysis for systems biology</title><author>Babtie, Ann C. ; Kirk, Paul ; Stumpf, Michael P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-a3540edca02e1c9ab8a735e23f009f4c60d84d6df9487333f8c2bc1078f20a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Architectural models</topic><topic>Biological Sciences</topic><topic>Datasets</topic><topic>Dynamic modeling</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Odes</topic><topic>Ordinary differential equations</topic><topic>Parametric models</topic><topic>Photochemistry</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Sensitivity analysis</topic><topic>Simulations</topic><topic>Statistical inference</topic><topic>systems analysis</topic><topic>Systems Biology - methods</topic><topic>Topology</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babtie, Ann C.</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babtie, Ann C.</au><au>Kirk, Paul</au><au>Stumpf, Michael P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological sensitivity analysis for systems biology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-30</date><risdate>2014</risdate><volume>111</volume><issue>52</issue><spage>18507</spage><epage>18512</epage><pages>18507-18512</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Mathematical models are widely used to study natural systems. They allow us to test and generate hypotheses, and help us to understand the processes underlying the observed behavior. However, such models are, by necessity, simplified representations of the true systems, so it is critical to understand the impact of assumptions made when using a particular model. Here we provide a method to assess how uncertainty about the structure of a natural system affects the conclusions we can draw from mathematical models of its dynamics. We use biological examples to illustrate the importance of considering uncertainty in both model structure and parameters. We show how solely considering the latter source of uncertainty can result in misleading conclusions and incorrect model inferences.
Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25512544</pmid><doi>10.1073/pnas.1414026112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (52), p.18507-18512 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_111_52_18507 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Architectural models Biological Sciences Datasets Dynamic modeling Inference Mathematical models Modeling Models, Biological Odes Ordinary differential equations Parametric models Photochemistry Physical properties Physical Sciences Sensitivity analysis Simulations Statistical inference systems analysis Systems Biology - methods Topology uncertainty |
title | Topological sensitivity analysis for systems biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20sensitivity%20analysis%20for%20systems%20biology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Babtie,%20Ann%20C.&rft.date=2014-12-30&rft.volume=111&rft.issue=52&rft.spage=18507&rft.epage=18512&rft.pages=18507-18512&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1414026112&rft_dat=%3Cjstor_pnas_%3E43278875%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645775036&rft_id=info:pmid/25512544&rft_jstor_id=43278875&rfr_iscdi=true |