On inference of causality for discrete state models in a multiscale context
Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state mode...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (41), p.14651-14656 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14656 |
---|---|
container_issue | 41 |
container_start_page | 14651 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Gerber, Susanne Horenko, Illia |
description | Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD. |
doi_str_mv | 10.1073/pnas.1410404111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_41_14651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43190132</jstor_id><sourcerecordid>43190132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-965ea887bbd4e55e526ac0fa425559fa0bf8aea45fb89327de8bae836a2ae1493</originalsourceid><addsrcrecordid>eNpdkc1v1DAUxC0EokvhzAlkiUsvaZ8d22tfkKqKL1GpFzhbL8kLZJXEi-1U9L_H0S7Lx8U-vN-MZjSMvRRwKWBbX-1nTJdCCVCghBCP2EaAE5VRDh6zDYDcVlZJdcaepbQDAKctPGVnUkuzNTVs2Oe7mQ9zT5HmlnjoeYtLwnHID7wPkXdDaiNl4iljeafQ0ZiKgCOfljGXK47E2zBn-pmfsyc9joleHP9z9vX9uy83H6vbuw-fbq5vq1YZmytnNKG126bpFGlNJQu20KOSWmvXIzS9RUKl-8a6Wm47sg2SrQ1KJKFcfc7eHnz3SzNR19KcI45-H4cJ44MPOPh_L_Pw3X8L915J0EZBMbg4GsTwY6GU_VSa0DjiTGFJXhghnQNdy4K--Q_dhSXOpd5K1VoCGFuoqwPVxpBSpP4URoBfh_LrUP7PUEXx-u8OJ_73MgXgR2BVnuyE8EoUI6NXj1cHZJdyiCdG1cKBKNl_AfbQo7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613520068</pqid></control><display><type>article</type><title>On inference of causality for discrete state models in a multiscale context</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gerber, Susanne ; Horenko, Illia</creator><creatorcontrib>Gerber, Susanne ; Horenko, Illia</creatorcontrib><description>Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1410404111</identifier><identifier>PMID: 25267630</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Causality ; Computer simulation ; Data analysis ; Inference ; Information theory ; Markov models ; Mathematical vectors ; Modeling ; Multiscale modeling ; Parametric models ; Physical Sciences ; Polypeptides ; Statistical inference ; Stochastic models ; Three dimensional modeling ; Time series</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (41), p.14651-14656</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 14, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-965ea887bbd4e55e526ac0fa425559fa0bf8aea45fb89327de8bae836a2ae1493</citedby><cites>FETCH-LOGICAL-c468t-965ea887bbd4e55e526ac0fa425559fa0bf8aea45fb89327de8bae836a2ae1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43190132$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43190132$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25267630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerber, Susanne</creatorcontrib><creatorcontrib>Horenko, Illia</creatorcontrib><title>On inference of causality for discrete state models in a multiscale context</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD.</description><subject>Causality</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Inference</subject><subject>Information theory</subject><subject>Markov models</subject><subject>Mathematical vectors</subject><subject>Modeling</subject><subject>Multiscale modeling</subject><subject>Parametric models</subject><subject>Physical Sciences</subject><subject>Polypeptides</subject><subject>Statistical inference</subject><subject>Stochastic models</subject><subject>Three dimensional modeling</subject><subject>Time series</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAUxC0EokvhzAlkiUsvaZ8d22tfkKqKL1GpFzhbL8kLZJXEi-1U9L_H0S7Lx8U-vN-MZjSMvRRwKWBbX-1nTJdCCVCghBCP2EaAE5VRDh6zDYDcVlZJdcaepbQDAKctPGVnUkuzNTVs2Oe7mQ9zT5HmlnjoeYtLwnHID7wPkXdDaiNl4iljeafQ0ZiKgCOfljGXK47E2zBn-pmfsyc9joleHP9z9vX9uy83H6vbuw-fbq5vq1YZmytnNKG126bpFGlNJQu20KOSWmvXIzS9RUKl-8a6Wm47sg2SrQ1KJKFcfc7eHnz3SzNR19KcI45-H4cJ44MPOPh_L_Pw3X8L915J0EZBMbg4GsTwY6GU_VSa0DjiTGFJXhghnQNdy4K--Q_dhSXOpd5K1VoCGFuoqwPVxpBSpP4URoBfh_LrUP7PUEXx-u8OJ_73MgXgR2BVnuyE8EoUI6NXj1cHZJdyiCdG1cKBKNl_AfbQo7c</recordid><startdate>20141014</startdate><enddate>20141014</enddate><creator>Gerber, Susanne</creator><creator>Horenko, Illia</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141014</creationdate><title>On inference of causality for discrete state models in a multiscale context</title><author>Gerber, Susanne ; Horenko, Illia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-965ea887bbd4e55e526ac0fa425559fa0bf8aea45fb89327de8bae836a2ae1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Causality</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Inference</topic><topic>Information theory</topic><topic>Markov models</topic><topic>Mathematical vectors</topic><topic>Modeling</topic><topic>Multiscale modeling</topic><topic>Parametric models</topic><topic>Physical Sciences</topic><topic>Polypeptides</topic><topic>Statistical inference</topic><topic>Stochastic models</topic><topic>Three dimensional modeling</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerber, Susanne</creatorcontrib><creatorcontrib>Horenko, Illia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerber, Susanne</au><au>Horenko, Illia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On inference of causality for discrete state models in a multiscale context</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-14</date><risdate>2014</risdate><volume>111</volume><issue>41</issue><spage>14651</spage><epage>14656</epage><pages>14651-14656</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25267630</pmid><doi>10.1073/pnas.1410404111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (41), p.14651-14656 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_111_41_14651 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Causality Computer simulation Data analysis Inference Information theory Markov models Mathematical vectors Modeling Multiscale modeling Parametric models Physical Sciences Polypeptides Statistical inference Stochastic models Three dimensional modeling Time series |
title | On inference of causality for discrete state models in a multiscale context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20inference%20of%20causality%20for%20discrete%20state%20models%20in%20a%20multiscale%20context&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gerber,%20Susanne&rft.date=2014-10-14&rft.volume=111&rft.issue=41&rft.spage=14651&rft.epage=14656&rft.pages=14651-14656&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1410404111&rft_dat=%3Cjstor_pnas_%3E43190132%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613520068&rft_id=info:pmid/25267630&rft_jstor_id=43190132&rfr_iscdi=true |