Transactivation of programmed ribosomal frameshifting by a viral protein

Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-05, Vol.111 (21), p.E2172-E2181
Hauptverfasser: Li, Yanhua, Treffers, Emmely E, Napthine, Sawsan, Tas, Ali, Zhu, Longchao, Sun, Zhi, Bell, Susanne, Mark, Brian L, van Veelen, Peter A, van Hemert, Martijn J, Firth, Andrew E, Brierley, Ian, Snijder, Eric J, Fang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2181
container_issue 21
container_start_page E2172
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Li, Yanhua
Treffers, Emmely E
Napthine, Sawsan
Tas, Ali
Zhu, Longchao
Sun, Zhi
Bell, Susanne
Mark, Brian L
van Veelen, Peter A
van Hemert, Martijn J
Firth, Andrew E
Brierley, Ian
Snijder, Eric J
Fang, Ying
description Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.
doi_str_mv 10.1073/pnas.1321930111
format Article
fullrecord <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_21_E2172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551633204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EomngzA1W4sJl2xl_7wWpqkqLVIkD7dnybu3UVdYO9iZS_3u8SggfJ04jzfzm6c08Qt4hnCEodr6Jtpwho9gxQMQXZIHQYSt5By_JAoCqVnPKT8hpKU8A0AkNr8kJ5ZoK3eGC3NxlG4sdprCzU0ixSb7Z5LTKdhzdQ5NDn0oa7brxtePKY_BTiKumf25sswu5Dio9uRDfkFferot7e6hLcv_l6u7ypr39dv318uK2HQSwqdVKcq01OCp73okOBLPaS91T6UAJ65GhVoPl3ArpkGqnKac9-gfplWQDW5LPe93Ntq8OBxen6sJschhtfjbJBvP3JIZHs0o7w4GD4LQKfDoI5PRj68pkxlAGt17b6NK2GBQCJWMU-H-gjKuOCykr-vEf9Cltc6yfmClBFdW1Lsn5nhpyKiU7f_SNYOZAzRyo-R1o3Xj_57lH_leCFWgOwLx5lEM0FM0VRTVf_GGPeJuMXeVQzP13CigBkHNZff0EEgKu7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535272815</pqid></control><display><type>article</type><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</creator><creatorcontrib>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</creatorcontrib><description>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1321930111</identifier><identifier>PMID: 24825891</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Line ; Chromatography, Liquid ; Electrophoresis, Polyacrylamide Gel ; Frameshifting, Ribosomal - physiology ; Gene expression ; Gene Expression Regulation, Viral - genetics ; Haplorhini ; HEK293 Cells ; Humans ; Immunoassay ; Luciferases ; PNAS Plus ; Polypeptides ; Porcine respiratory and reproductive syndrome virus ; Porcine respiratory and reproductive syndrome virus - genetics ; Proteins ; Ribonucleic acid ; RNA ; Rosaniline Dyes ; Tandem Mass Spectrometry ; Transcriptional Activation - physiology ; Viral Nonstructural Proteins - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.E2172-E2181</ispartof><rights>Copyright National Academy of Sciences May 27, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</citedby><cites>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040542/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040542/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yanhua</creatorcontrib><creatorcontrib>Treffers, Emmely E</creatorcontrib><creatorcontrib>Napthine, Sawsan</creatorcontrib><creatorcontrib>Tas, Ali</creatorcontrib><creatorcontrib>Zhu, Longchao</creatorcontrib><creatorcontrib>Sun, Zhi</creatorcontrib><creatorcontrib>Bell, Susanne</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>van Veelen, Peter A</creatorcontrib><creatorcontrib>van Hemert, Martijn J</creatorcontrib><creatorcontrib>Firth, Andrew E</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Chromatography, Liquid</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Frameshifting, Ribosomal - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Haplorhini</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Luciferases</subject><subject>PNAS Plus</subject><subject>Polypeptides</subject><subject>Porcine respiratory and reproductive syndrome virus</subject><subject>Porcine respiratory and reproductive syndrome virus - genetics</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rosaniline Dyes</subject><subject>Tandem Mass Spectrometry</subject><subject>Transcriptional Activation - physiology</subject><subject>Viral Nonstructural Proteins - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vEzEQxS0EomngzA1W4sJl2xl_7wWpqkqLVIkD7dnybu3UVdYO9iZS_3u8SggfJ04jzfzm6c08Qt4hnCEodr6Jtpwho9gxQMQXZIHQYSt5By_JAoCqVnPKT8hpKU8A0AkNr8kJ5ZoK3eGC3NxlG4sdprCzU0ixSb7Z5LTKdhzdQ5NDn0oa7brxtePKY_BTiKumf25sswu5Dio9uRDfkFferot7e6hLcv_l6u7ypr39dv318uK2HQSwqdVKcq01OCp73okOBLPaS91T6UAJ65GhVoPl3ArpkGqnKac9-gfplWQDW5LPe93Ntq8OBxen6sJschhtfjbJBvP3JIZHs0o7w4GD4LQKfDoI5PRj68pkxlAGt17b6NK2GBQCJWMU-H-gjKuOCykr-vEf9Cltc6yfmClBFdW1Lsn5nhpyKiU7f_SNYOZAzRyo-R1o3Xj_57lH_leCFWgOwLx5lEM0FM0VRTVf_GGPeJuMXeVQzP13CigBkHNZff0EEgKu7Q</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Li, Yanhua</creator><creator>Treffers, Emmely E</creator><creator>Napthine, Sawsan</creator><creator>Tas, Ali</creator><creator>Zhu, Longchao</creator><creator>Sun, Zhi</creator><creator>Bell, Susanne</creator><creator>Mark, Brian L</creator><creator>van Veelen, Peter A</creator><creator>van Hemert, Martijn J</creator><creator>Firth, Andrew E</creator><creator>Brierley, Ian</creator><creator>Snijder, Eric J</creator><creator>Fang, Ying</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140527</creationdate><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><author>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Chromatography, Liquid</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Frameshifting, Ribosomal - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Haplorhini</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Luciferases</topic><topic>PNAS Plus</topic><topic>Polypeptides</topic><topic>Porcine respiratory and reproductive syndrome virus</topic><topic>Porcine respiratory and reproductive syndrome virus - genetics</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rosaniline Dyes</topic><topic>Tandem Mass Spectrometry</topic><topic>Transcriptional Activation - physiology</topic><topic>Viral Nonstructural Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanhua</creatorcontrib><creatorcontrib>Treffers, Emmely E</creatorcontrib><creatorcontrib>Napthine, Sawsan</creatorcontrib><creatorcontrib>Tas, Ali</creatorcontrib><creatorcontrib>Zhu, Longchao</creatorcontrib><creatorcontrib>Sun, Zhi</creatorcontrib><creatorcontrib>Bell, Susanne</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>van Veelen, Peter A</creatorcontrib><creatorcontrib>van Hemert, Martijn J</creatorcontrib><creatorcontrib>Firth, Andrew E</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanhua</au><au>Treffers, Emmely E</au><au>Napthine, Sawsan</au><au>Tas, Ali</au><au>Zhu, Longchao</au><au>Sun, Zhi</au><au>Bell, Susanne</au><au>Mark, Brian L</au><au>van Veelen, Peter A</au><au>van Hemert, Martijn J</au><au>Firth, Andrew E</au><au>Brierley, Ian</au><au>Snijder, Eric J</au><au>Fang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transactivation of programmed ribosomal frameshifting by a viral protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>111</volume><issue>21</issue><spage>E2172</spage><epage>E2181</epage><pages>E2172-E2181</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24825891</pmid><doi>10.1073/pnas.1321930111</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.E2172-E2181
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_111_21_E2172
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cell Line
Chromatography, Liquid
Electrophoresis, Polyacrylamide Gel
Frameshifting, Ribosomal - physiology
Gene expression
Gene Expression Regulation, Viral - genetics
Haplorhini
HEK293 Cells
Humans
Immunoassay
Luciferases
PNAS Plus
Polypeptides
Porcine respiratory and reproductive syndrome virus
Porcine respiratory and reproductive syndrome virus - genetics
Proteins
Ribonucleic acid
RNA
Rosaniline Dyes
Tandem Mass Spectrometry
Transcriptional Activation - physiology
Viral Nonstructural Proteins - physiology
title Transactivation of programmed ribosomal frameshifting by a viral protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transactivation%20of%20programmed%20ribosomal%20frameshifting%20by%20a%20viral%20protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Yanhua&rft.date=2014-05-27&rft.volume=111&rft.issue=21&rft.spage=E2172&rft.epage=E2181&rft.pages=E2172-E2181&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1321930111&rft_dat=%3Cproquest_pnas_%3E1551633204%3C/proquest_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535272815&rft_id=info:pmid/24825891&rfr_iscdi=true