Transactivation of programmed ribosomal frameshifting by a viral protein
Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-05, Vol.111 (21), p.E2172-E2181 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2181 |
---|---|
container_issue | 21 |
container_start_page | E2172 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Li, Yanhua Treffers, Emmely E Napthine, Sawsan Tas, Ali Zhu, Longchao Sun, Zhi Bell, Susanne Mark, Brian L van Veelen, Peter A van Hemert, Martijn J Firth, Andrew E Brierley, Ian Snijder, Eric J Fang, Ying |
description | Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection. |
doi_str_mv | 10.1073/pnas.1321930111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_21_E2172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551633204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EomngzA1W4sJl2xl_7wWpqkqLVIkD7dnybu3UVdYO9iZS_3u8SggfJ04jzfzm6c08Qt4hnCEodr6Jtpwho9gxQMQXZIHQYSt5By_JAoCqVnPKT8hpKU8A0AkNr8kJ5ZoK3eGC3NxlG4sdprCzU0ixSb7Z5LTKdhzdQ5NDn0oa7brxtePKY_BTiKumf25sswu5Dio9uRDfkFferot7e6hLcv_l6u7ypr39dv318uK2HQSwqdVKcq01OCp73okOBLPaS91T6UAJ65GhVoPl3ArpkGqnKac9-gfplWQDW5LPe93Ntq8OBxen6sJschhtfjbJBvP3JIZHs0o7w4GD4LQKfDoI5PRj68pkxlAGt17b6NK2GBQCJWMU-H-gjKuOCykr-vEf9Cltc6yfmClBFdW1Lsn5nhpyKiU7f_SNYOZAzRyo-R1o3Xj_57lH_leCFWgOwLx5lEM0FM0VRTVf_GGPeJuMXeVQzP13CigBkHNZff0EEgKu7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535272815</pqid></control><display><type>article</type><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</creator><creatorcontrib>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</creatorcontrib><description>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1321930111</identifier><identifier>PMID: 24825891</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Line ; Chromatography, Liquid ; Electrophoresis, Polyacrylamide Gel ; Frameshifting, Ribosomal - physiology ; Gene expression ; Gene Expression Regulation, Viral - genetics ; Haplorhini ; HEK293 Cells ; Humans ; Immunoassay ; Luciferases ; PNAS Plus ; Polypeptides ; Porcine respiratory and reproductive syndrome virus ; Porcine respiratory and reproductive syndrome virus - genetics ; Proteins ; Ribonucleic acid ; RNA ; Rosaniline Dyes ; Tandem Mass Spectrometry ; Transcriptional Activation - physiology ; Viral Nonstructural Proteins - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.E2172-E2181</ispartof><rights>Copyright National Academy of Sciences May 27, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</citedby><cites>FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040542/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040542/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yanhua</creatorcontrib><creatorcontrib>Treffers, Emmely E</creatorcontrib><creatorcontrib>Napthine, Sawsan</creatorcontrib><creatorcontrib>Tas, Ali</creatorcontrib><creatorcontrib>Zhu, Longchao</creatorcontrib><creatorcontrib>Sun, Zhi</creatorcontrib><creatorcontrib>Bell, Susanne</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>van Veelen, Peter A</creatorcontrib><creatorcontrib>van Hemert, Martijn J</creatorcontrib><creatorcontrib>Firth, Andrew E</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Chromatography, Liquid</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Frameshifting, Ribosomal - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Haplorhini</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Luciferases</subject><subject>PNAS Plus</subject><subject>Polypeptides</subject><subject>Porcine respiratory and reproductive syndrome virus</subject><subject>Porcine respiratory and reproductive syndrome virus - genetics</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rosaniline Dyes</subject><subject>Tandem Mass Spectrometry</subject><subject>Transcriptional Activation - physiology</subject><subject>Viral Nonstructural Proteins - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vEzEQxS0EomngzA1W4sJl2xl_7wWpqkqLVIkD7dnybu3UVdYO9iZS_3u8SggfJ04jzfzm6c08Qt4hnCEodr6Jtpwho9gxQMQXZIHQYSt5By_JAoCqVnPKT8hpKU8A0AkNr8kJ5ZoK3eGC3NxlG4sdprCzU0ixSb7Z5LTKdhzdQ5NDn0oa7brxtePKY_BTiKumf25sswu5Dio9uRDfkFferot7e6hLcv_l6u7ypr39dv318uK2HQSwqdVKcq01OCp73okOBLPaS91T6UAJ65GhVoPl3ArpkGqnKac9-gfplWQDW5LPe93Ntq8OBxen6sJschhtfjbJBvP3JIZHs0o7w4GD4LQKfDoI5PRj68pkxlAGt17b6NK2GBQCJWMU-H-gjKuOCykr-vEf9Cltc6yfmClBFdW1Lsn5nhpyKiU7f_SNYOZAzRyo-R1o3Xj_57lH_leCFWgOwLx5lEM0FM0VRTVf_GGPeJuMXeVQzP13CigBkHNZff0EEgKu7Q</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Li, Yanhua</creator><creator>Treffers, Emmely E</creator><creator>Napthine, Sawsan</creator><creator>Tas, Ali</creator><creator>Zhu, Longchao</creator><creator>Sun, Zhi</creator><creator>Bell, Susanne</creator><creator>Mark, Brian L</creator><creator>van Veelen, Peter A</creator><creator>van Hemert, Martijn J</creator><creator>Firth, Andrew E</creator><creator>Brierley, Ian</creator><creator>Snijder, Eric J</creator><creator>Fang, Ying</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140527</creationdate><title>Transactivation of programmed ribosomal frameshifting by a viral protein</title><author>Li, Yanhua ; Treffers, Emmely E ; Napthine, Sawsan ; Tas, Ali ; Zhu, Longchao ; Sun, Zhi ; Bell, Susanne ; Mark, Brian L ; van Veelen, Peter A ; van Hemert, Martijn J ; Firth, Andrew E ; Brierley, Ian ; Snijder, Eric J ; Fang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-87648880e26b4959053a8f68b26e075af13187ca44a56e128e8242b1fd6f763c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Chromatography, Liquid</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Frameshifting, Ribosomal - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Haplorhini</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Luciferases</topic><topic>PNAS Plus</topic><topic>Polypeptides</topic><topic>Porcine respiratory and reproductive syndrome virus</topic><topic>Porcine respiratory and reproductive syndrome virus - genetics</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rosaniline Dyes</topic><topic>Tandem Mass Spectrometry</topic><topic>Transcriptional Activation - physiology</topic><topic>Viral Nonstructural Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanhua</creatorcontrib><creatorcontrib>Treffers, Emmely E</creatorcontrib><creatorcontrib>Napthine, Sawsan</creatorcontrib><creatorcontrib>Tas, Ali</creatorcontrib><creatorcontrib>Zhu, Longchao</creatorcontrib><creatorcontrib>Sun, Zhi</creatorcontrib><creatorcontrib>Bell, Susanne</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>van Veelen, Peter A</creatorcontrib><creatorcontrib>van Hemert, Martijn J</creatorcontrib><creatorcontrib>Firth, Andrew E</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Fang, Ying</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanhua</au><au>Treffers, Emmely E</au><au>Napthine, Sawsan</au><au>Tas, Ali</au><au>Zhu, Longchao</au><au>Sun, Zhi</au><au>Bell, Susanne</au><au>Mark, Brian L</au><au>van Veelen, Peter A</au><au>van Hemert, Martijn J</au><au>Firth, Andrew E</au><au>Brierley, Ian</au><au>Snijder, Eric J</au><au>Fang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transactivation of programmed ribosomal frameshifting by a viral protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>111</volume><issue>21</issue><spage>E2172</spage><epage>E2181</epage><pages>E2172-E2181</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24825891</pmid><doi>10.1073/pnas.1321930111</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.E2172-E2181 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_111_21_E2172 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cell Line Chromatography, Liquid Electrophoresis, Polyacrylamide Gel Frameshifting, Ribosomal - physiology Gene expression Gene Expression Regulation, Viral - genetics Haplorhini HEK293 Cells Humans Immunoassay Luciferases PNAS Plus Polypeptides Porcine respiratory and reproductive syndrome virus Porcine respiratory and reproductive syndrome virus - genetics Proteins Ribonucleic acid RNA Rosaniline Dyes Tandem Mass Spectrometry Transcriptional Activation - physiology Viral Nonstructural Proteins - physiology |
title | Transactivation of programmed ribosomal frameshifting by a viral protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transactivation%20of%20programmed%20ribosomal%20frameshifting%20by%20a%20viral%20protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Yanhua&rft.date=2014-05-27&rft.volume=111&rft.issue=21&rft.spage=E2172&rft.epage=E2181&rft.pages=E2172-E2181&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1321930111&rft_dat=%3Cproquest_pnas_%3E1551633204%3C/proquest_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535272815&rft_id=info:pmid/24825891&rfr_iscdi=true |